Flavonoids isolated from the flowers of Pulsatilla flavescens and their anti-piroplasm activity

  • Dorj Ganchimeg
  • Badarch Batbold
  • Toshihiro MurataEmail author
  • Bekh-Ochir Davaapurev
  • Tserendorj Munkhjargal
  • Bumduuren Tuvshintulga
  • Keisuke Suganuma
  • Ikuo Igarashi
  • Buyanmandakh Buyankhishig
  • Kenroh Sasaki
  • Dulamjav Batsuren
  • Javzan Batkhuu


Pulsatilla species are known as “Yargui”, and their flowers are traditionally used in Mongolia as a tonic and for the treatment of inflammatory diseases. By chemical investigation of P. flavescens flowers, 21 flavonoids, including a new chalcone C-glucoside, chalconaringenin 2′-O-β-d-glucopyranosyl-5′-β-d-glucopyranoside, and two new flavanone C-glucosides, (2R)- and (2S)-naringenin 8-β-d-glucopyranosyl-4′-O-β-d-glucopyranoside, were isolated. The absolute configurations of the seven flavanone glucosides were elucidated by ECD spectra. For the isolated compounds, inhibitory activity against Babesia caballi and Theileria equi, which cause fatal diseases in horses, was estimated. Although most of the isolated chalcone and flavanone derivatives did not show any anti-piroplasm activity, all the isolated flavone and flavonol derivatives showed moderate effects against B. caballi and/or T. equi.


Pulsatilla flavescens Yargui Flavonoids Anti-piroplasma activity 



We thank Dr. B. Odonbayar, Mr. T. Ishikawa, and Mr. Y. Muraki, Mr. S. Sato, and Mr. T. Matsuki, Tohoku Medical and Pharmaceutical University, for assistance with the compound isolations and the MS measurements. This work was supported by JICA M-JEED project, Grant-in-aid project from Mongolian Foundation of Science and Technology (2018/58), and Grant for Advanced Research at National University of Mongolia (P2018-3601). This work was partially supported by the Kanno Foundation of Japan, a Cooperative Research Grant (29-joint-6, 30-joint-11) from the National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, and AMED/JICA SATREPS.

Compliance with ethical standards

Conflicts of interest

The authors indicate that there is no conflict of interest.

Supplementary material

11418_2019_1294_MOESM1_ESM.pdf (878 kb)
Supplementary material 1 (PDF 878 kb)


  1. 1.
    Batkhuu J, Sanchir C, Ligaa U, Jamsran T (2005) Colored illustrations of Mongolian useful plants. Admon Ulaanbaatar 2:191Google Scholar
  2. 2.
  3. 3.
    Munkhjargal T, Sivakumar T, Battsetseg B, Nyamjargal T, Aboulaila M, Purevtseren B, Bayarsaikhan D, Byambaa B, Terkawi MA, Yokoyama N, Igarashi I (2013) Prevalence and genetic diversity of equine piroplasms in Tov province, Mongolia. Infect Genet Evol 16:178–185CrossRefPubMedGoogle Scholar
  4. 4.
    Uilenberg G (2006) Babesia-A historical overview. Vet Parasitol 138:3–10CrossRefPubMedGoogle Scholar
  5. 5.
    Qablan MA, Sloboda M, Jirků M, Oborník M, Dwairi S, Amr ZS, Hořín P, Lukeš J, Modrý D (2012) Quest for the piroplasms in camels: Identification of Theileria equi and Babesia caballi in Jordanian dromedaries by PCR. Vet Parasitol 186:456–460CrossRefPubMedGoogle Scholar
  6. 6.
    Grienke U, Zöll M, Peintner U, Rollinger JM (2014) European medicinal polypores-a modern view on traditional uses. View on traditional uses. J Ethnopharmacol 154:564–583CrossRefPubMedGoogle Scholar
  7. 7.
    Sadhu SK, Okuyama E, Fujimoto H, Ishibashi M (2003) Separation of Leucas aspera, a medicinal plant of bangladesh, guided by prostaglandin inhibitory and antioxidantactivities. Chem Pharm Bull 51:595–598CrossRefPubMedGoogle Scholar
  8. 8.
    Wan C, Yuan T, Cirello AL, Seeram NP (2012) Antioxidant and α-glucosidase inhibitory phenolics isolated from highbush blueberry flowers. Food Chem 135:1929–1937CrossRefPubMedGoogle Scholar
  9. 9.
    Kubo I, Yokokawa Y (1992) Two tyrosinase inhibiting flavonol glycosides from Buddleia coriacea. Phytochemistry 31:1075–1077CrossRefGoogle Scholar
  10. 10.
    El-Ansari MA, Nawwar MA, Saleh NAM (1995) Stachysetin, a diapigenin-7-glucoside-p, p’-dihydroxytruxinate from Stachys aegyptiaca. Phytochemistry 40:1543–1548CrossRefGoogle Scholar
  11. 11.
    Tschan GM, König GM, Wright AD, Sticher O (1996) Chamaemeloside, a new flavonoid glycoside from Chamaemelum nobile. Phytochemistry 41:643–646CrossRefGoogle Scholar
  12. 12.
    Kazuma K, Noda N, Suzuki M (2003) Malonylated flavonol glycosides from the petals of Clitoria ternatea. Phytochemistry 62:229–237CrossRefPubMedGoogle Scholar
  13. 13.
    Tsukamoto S, Tomise K, Aburatani M, Onuki H, Hirorta H, Ishiharajima E, Ohta T (2004) Isolation of cytochrome P450 inhibitors from strawberry fruit, Fragaria ananassa. J Nat Prod 67:1839–1841CrossRefPubMedGoogle Scholar
  14. 14.
    Kajjout M, Rolando C (2011) Regiospecific synthesis of quercetin O-β-d-glucosylated and O-β-d-glucuronidated isomers. Tetrahedron 67:4731–4741CrossRefGoogle Scholar
  15. 15.
    Jung HA, Kim JE, Chung HY, Choi JS (2003) Antioxidant principles of Nelumbo nucifera stamens. Arch Pharm Res 26:279–285CrossRefPubMedGoogle Scholar
  16. 16.
    Okamura N, Yagi A, Nishioka I (1981) Studies on the constituents of Zizyphi Fructus. V. Structures of glycosides of benzyl alcohol, vomifoliol and naringenin. Chem Pharm Bull 29:3507–3514CrossRefGoogle Scholar
  17. 17.
    Santos RG, Xavier NM, Bordado JC, Rauter AP (2013) Efficient and first regio- and stereoselective direct C-glycosylation of a flavanone catalysed by Pr(OTf)3 under conventional heating or ultrasound irradiation. Eur J Org Chem 2013:1441–1447CrossRefGoogle Scholar
  18. 18.
    Kashiha K, Tomooka N, Vaunghan DA, Kaga A, Ono Hiroshi, Kameyama M, Yoshida M (2003) Insecticidal composition containing naringenin derivatives. JP 2003137895AGoogle Scholar
  19. 19.
    Rao LJM, Kumari GNK, Rao NSP (1985) Flavonoid glycosides from Anisomeles ovata. J Nat Prod 48:150–151CrossRefGoogle Scholar
  20. 20.
    Zapesochnaya GG, Kurkin VA, Braslavskii VB, Filatova NV (2002) Phenolic compounds of Salix acutifolia Bark. Chem Nat Comp 38:314–318CrossRefGoogle Scholar
  21. 21.
    Badral D, Odonbayar B, Murata T, Munkhjargal T, Tuvshintulga B, Igarashi I, Suganuma K, Inoue N, Brantner AH, Odontuya G, Sasaki K, Batkhuu J (2017) Flavonoid and galloyl glycosides isolated from Saxifraga spinulosa and their antioxidative and inhibitory activities against species that cause piroplasmosis. J Nat Prod 80:2416–2423CrossRefPubMedGoogle Scholar
  22. 22.
    Tanaka T, Nakashima T, Ueda T, Tomii K, Kouno I (2007) Facile discrimination of aldose enantiomers by reversed-phase HPLC. Chem Pharm Bull 55:899–901CrossRefPubMedGoogle Scholar
  23. 23.
    Salama AA, AbouLaila M, Terkawi MA, Mousa A, El-Sify A, Allaam M, Zaghawa A, Yokoyama N, Igarashi I (2014) Inhibitory effect of allicin on the growth of Babesia and Theileria equi parasites. Parasitol Res 113:275–283CrossRefPubMedGoogle Scholar
  24. 24.
    Rizk MA, El-Sayed SAE, Terkawi MA, Youssef MA, El Said ESES, Elsayed G, El-Khodery S, El-Ashker M, Elsify A, Omar M, Salama A, Yokoyama N, Igarashi I (2015) Optimization of a fluorescence-based assay for large-scale drug screening against Babesia and Theileria parasites. PLoS ONE 10:e0125276CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy 2019

Authors and Affiliations

  • Dorj Ganchimeg
    • 1
    • 2
  • Badarch Batbold
    • 1
  • Toshihiro Murata
    • 3
    Email author
  • Bekh-Ochir Davaapurev
    • 1
  • Tserendorj Munkhjargal
    • 4
    • 5
  • Bumduuren Tuvshintulga
    • 4
  • Keisuke Suganuma
    • 4
    • 6
  • Ikuo Igarashi
    • 4
  • Buyanmandakh Buyankhishig
    • 3
  • Kenroh Sasaki
    • 3
  • Dulamjav Batsuren
    • 7
  • Javzan Batkhuu
    • 1
  1. 1.School of Engineering and Applied SciencesNational University of MongoliaUlaanbaatarMongolia
  2. 2.School of Natural Science and TechnologyKhovd UniversityKhovdMongolia
  3. 3.Department of PharmacognosyTohoku Medical and Pharmaceutical UniversityAoba-ku, SendaiJapan
  4. 4.National Research Center of Protozoan DiseasesObihiro University of Agriculture and Veterinary MedicineInada, ObihiroJapan
  5. 5.Institute of Veterinary MedicineMongolian University of Life ScienceZaisan, UlaanbaatarMongolia
  6. 6.Research Center for Global AgromedicineObihiro University of Agriculture and Veterinary MedicineInada, ObihiroJapan
  7. 7.Institute of Chemistry and Chemical TechnologyMongolian Academy of ScienceUlaanbaatarMongolia

Personalised recommendations