New vasorelaxant indole alkaloids, taberniacins A and B, from Tabernaemontana divaricata

  • Yusuke Hirasawa
  • Xin Dai
  • Jun Deguchi
  • Shota Hatano
  • Tadahiro Sasaki
  • Ruri Ohtsuka
  • Alfarius Eko Nugroho
  • Toshio Kaneda
  • Hiroshi MoritaEmail author


Taberniacins A (1) and B (2), new indole alkaloids, were isolated from the stems of Tabernaemontana divaricata (Apocynaceae). Structure elucidation of 1 and 2 was based on spectroscopic methods and total synthesis. Each alkaloid showed vasorelaxant activity against phenylephrine-induced contraction of isolated rat aorta.


Indole alkaloid Taberniacin A Taberniacin B Tabernaemontana divaricata Vasorelaxant 



This work was supported by Grants in-Aid for Scientific Research from JSPS, Japan.


  1. 1.
    Pratchayasakul W, Pongchaidecha A, Chattipakorn N, Chattipakorn S (2008) Ethnobotany & ethnopharmacology of Tabernaemontana divaricata. Indian J Med Res 127:317–335PubMedGoogle Scholar
  2. 2.
    Tarseli MA, Raehal KM, Brasher AK, Streicher JM, Groer CE, Cameron MD, Bohn LM, Micalizio GC (2011) Synthesis of conolidine, a potent non-opioid analgesic for tonic and persistent pain. Nat Chem 3:449–453CrossRefGoogle Scholar
  3. 3.
    Dagnino D, Schripsema J, Verpoorte R (1993) Comparison of terpenoid indole alkaloid production and degradation in two cell lines of Tabernaemontana divaricata. Plant Cell Rep 13:95–98CrossRefPubMedGoogle Scholar
  4. 4.
    Kam TS, Loh KY, Lim LH, Loong WL, Chuah CH, Wei C (1992) New alkaloids from the leaves of Tabernaemontana divaricata. Tetrahedron Lett 33:969–972CrossRefGoogle Scholar
  5. 5.
    Kam TS, Loh KY, Wei C (1993) Conophylline and conophyllidine:new dimeric alkaloids from Tabernaemontana divaricata. J Nat Prod 56:1865–1871CrossRefGoogle Scholar
  6. 6.
    Kam TS, Anuradha S (1995) Alkaloids from Tabernaemontana divaricata. Phytochemistry 40:313–316CrossRefGoogle Scholar
  7. 7.
    Kam TS, Pang HS, Lim TM (2003) Biologically active indole andbisindole alkaloids from Tabernaemontana divaricata. Org Biomol Chem 1:1292–1297CrossRefPubMedGoogle Scholar
  8. 8.
    Kam TS, Choo YM, Komiyama K (2004) Biologically active iboganand vallesamine derivatives from Tabernaemontana divaricata. Chem Biodivers 1:646–656CrossRefPubMedGoogle Scholar
  9. 9.
    Raj K, Shoeb A, Kapil RS, Popli SP (1974) Alkaloids of Tabernaemontana divaricata. Phytochemistry 13:1621–1622CrossRefGoogle Scholar
  10. 10.
    Schripsema J, Peltenburg-Looman A, Erkelens C, Verpoorte R (1991) Nitrogen metabolism in cultures of Tabernaemontana divaricata. Phytochemistry 30:3951–3954CrossRefGoogle Scholar
  11. 11.
    van Beek TA, Verpoorte R, Svendsen AB, Leeuwenberg AJ, Bisset NG (1984) Tabernaemontana L. (Apocynaceae): a review of its taxonomy, phytochemistry, ethnobotany and pharmacology. J Ethnopharmacol 10:1–156CrossRefPubMedGoogle Scholar
  12. 12.
    Hirasawa Y, Miyama S, Hosoya T, Koyama K, Rahman A, Kusumawati I, Zaini NC, Morita H (2009) Alasmontamine A, a first tetrakis monoterpene indole alkaloid from Tabernaemontana elegans. Org Lett 11:5718–5721CrossRefPubMedGoogle Scholar
  13. 13.
    Nugroho AE, Moue M, Sasaki T, Shirota O, Hadi AHA, Morita H (2018) Yohimbine-related alkaloids from Tabernaemontana corymbosa. Nat Prod Commun 13:347–350Google Scholar
  14. 14.
    Nugroho AE, Hashimoto A, Wong CP, Yokoe H, Tsubuki M, Kaneda T, Hadi AHA, Morita H (2018) Ceramicines M-P from Chisocheton ceramicus: isolation and structure-activity relationship study. J Nat Med 72:64–72CrossRefPubMedGoogle Scholar
  15. 15.
    Nugroho AE, Inoue D, Wong CP, Hirasawa Y, Kaneda T, Shirota O, Hadi AHA, Morita H (2018) Reinereins A and B, new onocerane triterpenoids from Reinwardtiodendron cinereum. J Nat Med 72:588–592CrossRefPubMedGoogle Scholar
  16. 16.
    Kaneda T, Matsumoto M, Sotozono Y, Nugroho AE, Hirasawa Y, Hadi AHA, Morita H (2019) Cycloartane-triterpenoid, (23R, 24E)-23-acetoxy-mangiferonic acid inhibited proliferation and migration in B16-F10 melanoma via MITF downregulation caused by inhibition of both β-catenin and c-Raf-MEK1-ERK signaling axis. J Nat Med 73:47–58CrossRefPubMedGoogle Scholar
  17. 17.
    Kaneda T, Nakajima Y, Koshikawa S, Nugroho AE, Morita H (2019) Cyclolinopeptide F, a cyclic peptide from flaxseed inhibited RANKL-induced osteoclastogenesis via downergulation of RANK expression. J Nat Med.
  18. 18.
    Prema, Wong CP, Awouafack MD, Nugroho AE, Win YY, Win NN, Ngwe H, Morita H, Morita H (2019) Two new quassinoids and other constituents from the Picrasma javanica wood and their biological activities. J Nat Med.
  19. 19.
    McLean S, Murray DG (1970) Isolation of indole (β-carboline), pyridine, and indole-pyridine alkaloids from Nauclea diderrichii. Can J Chem 48:867–868CrossRefGoogle Scholar
  20. 20.
    Murray DG, Szakolcia A, McLean S (1972) The constituents of Nauclea diderrichii. Part II. Isolation and classification of constituents; simple β-carboline and pyridine alkaloids. Can J Chem 50:1486–1495CrossRefGoogle Scholar
  21. 21.
    Mukhtar MR, Osman N, Awang K, Hazni H, Qureshi AK, Hadi AHA, Zaima K, Morita H, Litaudon M (2012) Neonaucline, a new indole alkaloid from the leaves of Ochreinauclea maingayii (Hook. f.) Ridsd. (Rubiaceae). Molecules 17:267–274CrossRefGoogle Scholar
  22. 22.
    Ahmad K, Thomas NF, Hadi AHA, Mukhtar MR, Mohamad K, Nafiah MA, Takeya K, Morita H, Litaudon M, Arai H, Awang K (2010) Oppositinines A and B: new vasorelaxant β-carboline alkaloids from Neisosperma oppositifolia. Chem Pharm Bull 58:1085–1087CrossRefPubMedGoogle Scholar
  23. 23.
    Suckling CJ, Murphy JA, Khalaf AI, Zhou S, Lizos DE, Nhien AN, Yasumatsu H, McVie A, Young LC, McCraw C, Waterman PG, Morris BJ, Pratt JA, Harvey AL (2007) M4 agonists/5HT7 antagonists with potential as antischizophrenic drugs: serominic compounds. Bioorg Med Chem Lett 17:2649–2655CrossRefPubMedGoogle Scholar
  24. 24.
    Cai L, Liu X, Tao X, Shen D (2004) Efficient microwave-assisted cyanation of aryl bromide. Synth Commun 34:1215–1221CrossRefGoogle Scholar
  25. 25.
    Schareina T, Zapf A, Magerlein W, Muller N, Beller M (2007) A state-of-the-art cyanation of aryl bromides: a novel and versatile copper catalyst system inspired by nature. Chem Eur J 13:6249–6254CrossRefPubMedGoogle Scholar
  26. 26.
    Weissman SA, Zewge D, Chen C (2005) Ligand-free palladium-catalyzed cyanation of aryl halides. J Org Chem 70:1508–1510CrossRefPubMedGoogle Scholar
  27. 27.
    Baliski R, Kaczmarek L (1993) Mild and efficient conversion of nitriles to amides with basic urea-hydrogen peroxide adduct. Synth Commun 23:3149–3155CrossRefGoogle Scholar
  28. 28.
    Mukhtar MR, Nafiah MA, Awang K, Thomas NF, Zaima K, Morita H, Litaudon M, Hadi AHA (2009) α’-Oxoperakensimines A-C, new bisbenzylisoquinoline alkaloids from Alseodaphne perakensis (Gamble) Kosterm. Heterocycles 78:2085–2092CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy 2019

Authors and Affiliations

  • Yusuke Hirasawa
    • 1
  • Xin Dai
    • 1
  • Jun Deguchi
    • 1
  • Shota Hatano
    • 1
  • Tadahiro Sasaki
    • 1
  • Ruri Ohtsuka
    • 1
  • Alfarius Eko Nugroho
    • 1
  • Toshio Kaneda
    • 1
  • Hiroshi Morita
    • 1
    Email author
  1. 1.Faculty of Pharmaceutical SciencesHoshi UniversityTokyoJapan

Personalised recommendations