A new 2H-benzindazole compound from Alternaria alternata Shm-1, an endophytic fungus isolated from the fresh wild fruit of Phellinus igniarius

  • Xiuli WuEmail author
  • Sa Wang
  • Cheng Liu
  • Caifang Zhang
  • Jinjing Guo
  • Xiaoya ShangEmail author


Endophytic fungi have been shown in recent years to produce a series of bioactive secondary metabolites. Several endophytic fungi were isolated from the fresh wild body of Phellinus igniarius, and initially evaluated for their antimicrobial activity. Among which, Shm-1 extract showed moderate inhibitory activity against Clavibacter michiganense and the fungus was identified to be Alternaria alternata Shm-1 through the comparison of morphological characteristics and the sequence of the rDNA ITS with those of other Alternaria species. A new 2H-benzindazole derivative, alterindazolin A (1), has been isolated from cultures of the endophyte Alternaria alternata Shm-1. Its structure was characterized as 1-benzyl-5-p-hydroxy-phenyloxygen-benz[e]indazole by spectroscopic data analysis including 1D NMR, 2D NMR and MS spectrum.


Alternaria alternata Shm-1 Alterindazolin A Phellinus igniarius Antibacterial activity 



The authors are grateful to Prof. Z. G. Yue for the collection of fresh fruit of P. igniarius. The project was financially supported by the National Natural Science Foundation of China (NNSFC; Grant nos: 81260477 and 81560567).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11418_2019_1291_MOESM1_ESM.doc (1.3 mb)
Supplementary material 1 (DOC 1362 kb)


  1. 1.
    Li SC, Yang XM, Ma HL, Yan JK, Guo DZ (2015) Purification, characterization and antitumor activity of polysaccharides extracted from Phellinus igniarius mycelia. Carbohydr Polym 133:24–30CrossRefGoogle Scholar
  2. 2.
    Hsin MC, Hsieh YH, Wang PH, Ko JL, Hsin IL, Yang SF (2017) Hispolon suppresses metastasis via autophagic degradation of cathepsin S in cervical cancer cells. Cell Death Dis 8(10):e3089CrossRefGoogle Scholar
  3. 3.
    Zhou C, Jiang SS, Wang CY, Li R, Che HL (2014) Different immunology mechanisms of Phellinus igniarius in inhibiting growth of liver cancer and melanoma cells. Asian Pac J Cancer Prev 15(8):3659–3665CrossRefGoogle Scholar
  4. 4.
    Wang Y, Wang SJ, Mo SY, Li S, Yang YC, Shi JG (2005) Phelligridimer A, a highly oxygenated and unsaturated 26-membered macrocyclic metabolite with antioxidant activity from the fungus Phellinus igniarius. Org Lett 7(21):4733–4736CrossRefGoogle Scholar
  5. 5.
    Wang Y, Shang XY, Wang SJ, Mo SY, Li S, Yang YC, Ye F, Shi JG, He L (2007) Structures, biogenesis, and biological activities of pyrano[4,3-c]isochromen-4-one derivatives from the Fungus Phellinus igniarius. J Nat Prod 70(2):296–299CrossRefGoogle Scholar
  6. 6.
    Konno S, Chu K, Feuer N, Phillips J, Choudhury M (2015) Potent anticancer effects of bioactive mushroom extracts (Phellinus linteus) on a variety of human cancer cells. J Clin Med Res 7(2):76–82CrossRefGoogle Scholar
  7. 7.
    Zhang H, Ma H, Liu W, Pei J, Wang Z, Zhou H, Yan J (2014) Ultrasound enhanced production and antioxidant activity of polysaccharides from mycelial fermentation of Phellinus igniarius. Carbohydr Polym 113:380–387CrossRefGoogle Scholar
  8. 8.
    Wu XL, Lin S, Zhu CG, Yue ZG, Yu Y, Zhao F, Liu B, Dai JG, Shi JG (2010) Homo- and heptanor-sterols and tremulane sesquiterpenes from cultures of Phellinus igniarius. J Nat Prod 73(7):1294–3000CrossRefGoogle Scholar
  9. 9.
    Mei CS, Flinn BS (2010) Microbial endophytes. Recent Pat Biotechnol 4:81–95CrossRefGoogle Scholar
  10. 10.
    Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP (2016) A friendly relationship between endophytic fungi and medicinal plants: a systemativ review. Front Microbiol 7:906CrossRefGoogle Scholar
  11. 11.
    Chuang KR (2012) Stress Response and pathogenicity of the necrotrophic fungal pathogen Alternaria alternata. Scientifica (Cairo) 2012:635431Google Scholar
  12. 12.
    Montemurro N, Visconti A (1992) Alternaria metabolites—chemical and biological data. In: Chelkowski J, Visconti A (eds) Alternaria biology, plant disease and metabolites. Elsevier, Amsterdam, The Netherlands, pp 449–557Google Scholar
  13. 13.
    Jordan DB, Basarab GS, Liao D, Johnson WMP, Winzenberg KN, Winkler DA (2001) Structure-based design of inhibitors of the rice blast fungal enzyme trihydroxynaphthalene reductase. J Mol Graph Model 19:434–447CrossRefGoogle Scholar
  14. 14.
    Wang JF, Li GL, Lu HY, Zheng ZH, Huang YJ, Su WJ (2000) Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol Lett 193:249–253CrossRefGoogle Scholar
  15. 15.
    Kropp BR, Hansen D, Flint KM, Thomson SV (1996) Artificial inoculation and colonization of dyer’s woad (Isatis tinctoria) by the systemic rust fungus Puccinia thlaspeos. Phytopathology 86:891–896CrossRefGoogle Scholar
  16. 16.
    Kumeda Y, Asao T (1996) Single-strand conformation polymorphism analysis of PCR-amplified ribosomal DNA internal transcribed spacers to differentiate species of Aspergillus section Flavi. Appl Environ Microbiol 62:2947–2952Google Scholar
  17. 17.
    Geetha R, Sathian CT, Prasad V, Gleeja VL (2015) Efficacy of purifed antimicrobial peptides from lactic acid bacteria against bovine mastitis pathogen. Asian J Dairy Food Res 34:259–264CrossRefGoogle Scholar
  18. 18.
    Simmons EG, Roberts RG (1993) Alternaria themes and variations. Mycotaxon 48:109–140Google Scholar
  19. 19.
    Oviedo MS, Sturm ME, Reynoso MM, Chulze SN, Ramirez ML (2013) Toxigenic profile and AFLP variability of Alternaria alternata and Alternaria infectoria occurring in wheat. Braz J Microbiol 44:447–455CrossRefGoogle Scholar
  20. 20.
    Basım H, Basım E, Baki D, Abdulai M, Öztürk N, Balkic R (2018) Identification and characterization of Alternaria alternata (Fr) Keissler causing Ceratonia Blight disease of carob (Ceratonia siliqua L) in Turkey. Eur J Plant Pathol 151(1):73–86Google Scholar
  21. 21.
    Grant SP, Embree MC, Downs JR, Townsend JD, Beam CF (2003) Preparation of alkyl 4,5-dihydro-2H-benz[g]indazole-2-carboxylates and methyl 4,5-dihydro-2H-benz[e]indazole-2-carboxylates from dilithiated 1-tetralone or 2-tetralone carboalkoxyhydrazones and aromatic esters. Ind Eng Chem Res 42:5721–5726CrossRefGoogle Scholar
  22. 22.
    Rosati O, Curini M, Marcotullio MC, Macchiarulo A, Perfumi M, Mattioli L, Rismondo F, Cravotto G (2007) Synthesis, docking studies and anti-inflammatory activity of 4,5,6,7-tetrahydro-2H indazole derivatives. Bioorg Med Chem 15:3463–3473CrossRefGoogle Scholar
  23. 23.
    Schenone S, Bruno O, Ranise A, Brullo C, Bondavalli F, Filippelli W, Mazzeo F, Capuano A, Falcone G (2003) 2-aryl-3-phenylamino-4,5-dihydro-2 h-benz[g]indazoles with analgesic activity. Il Farmaco 58:845–849CrossRefGoogle Scholar
  24. 24.
    Thangadurai A, Minu M, Wakode S, Agrawal S, Narasimhan B (2012) Indazole: a medicinally important heterocyclic moiety. Med Chem Res 21(7):1509–1523CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy 2019

Authors and Affiliations

  1. 1.College of Pharmacy, Ningxia Engineering and Technology Research Center of Modern Hui Medicine, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of educationNingxia Medical UniversityYinchuanPeople’s Republic of China
  2. 2.Beijing Key Laboratory of Bioactive Substances and Functional FoodsBeijing Union UniversityBeijingPeople’s Republic of China

Personalised recommendations