Advertisement

Journal of Natural Medicines

, Volume 73, Issue 1, pp 179–189 | Cite as

Betulinic acid attenuates liver fibrosis by inducing autophagy via the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway

  • Yuan Liu
  • Yanmeng Bi
  • Chan Mo
  • Ting Zeng
  • Sha Huang
  • Lei Gao
  • Xuegang SunEmail author
  • Zhiping LvEmail author
Original Paper
  • 209 Downloads

Abstract

The present study was designed to investigate the effects of betulinic acid on human hepatic stellate cells in vitro and C57BL/6 mice in vivo, as well as the signaling pathways involved. In this study, we explored the effects of betulinic acid on expression of alpha smooth muscle actin and autophagy-related proteins. Betulinic acid reduced pathological damage associated with liver fibrosis, as well as serum platelet-derived growth factor and serum hydroxyproline levels. Furthermore, betulinic acid downregulated the expression of alpha smooth muscle actin and type I collagen in mouse liver and upregulated the expression of microtubule-associated protein light chain 3B and autophagy-related gene 7 at the gene and protein levels. LC3II expression was increased and alpha smooth muscle actin expression was decreased in betulinic acid-treated hepatic stellate cells. Interventions with bafilomycin A1 and mCherry-GFP-LC3 adenoviruses promoted the formation of autophagosomes in hepatic stellate cells and the development of autophagic flow. Our study found that mitogen-activated protein kinase/extracellular signal-regulated kinase may be involved in the effects of betulinic acid on liver fibrosis. The present study suggests that betulinic acid has anti-hepatic fibrosis activity by inducing autophagy and could serve as a promising new agent for treating hepatic fibrosis.

Keywords

Betulinic acid Liver fibrosis Bafilomycin A1 Autophagy MAPK/ERK 

Abbreviations

BA

Betulinic acid

PDGF

Platelet-derived growth factor

3-MA

3-Methyladenine

BafA1

Bafilomycin A1

TEM

Transmission electron microscopy

PBS

Phosphate-buffered saline

MAPK

Mitogen-activated protein kinase

P70S6K

Ribosomal protein S6 kinase

ERK

Extracellular-regulated protein kinases

Col

Colchicine

LC3

Microtubule-associated protein 1 light chain 3

ATG7

Autophagy-related protein 7

α-SMA

Alpha smooth muscle actin antibody

COL-1

Collagen I

PI3K

Phosphatidylinositol 3-kinase

mTOR

The mammalian target of rapamycin

ECM

Extracellular matrix

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81603501 and 81774170), Science and Technology Planning Project of Guangdong Province (2014A020221097), Administration of Traditional Chinese Medicine of Guangdong Province (20162087), Science and Technology Planning Project of Guangzhou City (201508020014 and 201707010080), the Natural Science Foundation of Guangdong Province (2018B030306012 and 2017A030313903), the Scientific Research Initiative Program of Southern Medical University (LX2015N003 and CX2017N001), Combined Science Technology Project of Guangdong Provincial Department of Science and Technology and Guangdong Provincial Academy of Traditional Chinese Medicine (2014A020221011); Guangdong Province Bureau of Traditional Chinese Medicine Scientific Research Project (20161161).

Authors’ contributions

ZL and XS participated in the conception and design of the study; YL and YB participated in generation, collection, assembly, and interpretation of data; CM and TZ participated in drafting and revision of the manuscript; SH and LG participated in statistical analysis; ZL obtained funding.

Compliance with ethical standards

Conflict of interest statement

The authors have no disclosures to report.

References

  1. 1.
    Schuppan D, Pinzani M (2012) Anti-fibrotic therapy: lost in translation? J Hepatol 56(Suppl 1):S66–S74.  https://doi.org/10.1016/S0168-8278(12)60008-7 CrossRefGoogle Scholar
  2. 2.
    Kubow KE, Vukmirovic R, Zhe L, Klotzsch E, Smith ML, Gourdon D, Luna S, Vogel V (2015) Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix. Nat Commun 6:8026.  https://doi.org/10.1038/ncomms9026 CrossRefGoogle Scholar
  3. 3.
    Zou X, Ramachandran P, Kendall TJ, Pellicoro A, Dora E, Aucott RL, Manwani K, Man TY, Chapman KE, Henderson NC, Forbes SJ, Webster SP, Iredale JP, Walker BR, Michailidou Z (2018) 11Beta-hydroxysteroid dehydrogenase-1 deficiency or inhibition enhances hepatic myofibroblast activation in murine liver fibrosis. Hepatology (Baltimore, Md.) 67:2167–2181.  https://doi.org/10.1002/hep.29734 CrossRefGoogle Scholar
  4. 4.
    Fujioka T, Kashiwada Y, Kilkuskie RE, Cosentino LM, Ballas LM, Jiang JB, Janzen WP, Chen IS, Lee KH (1994) Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzygium claviflorum, and the anti-HIV activity of structurally related triterpenoids. J Nat Prod 57:243–247CrossRefGoogle Scholar
  5. 5.
    Damle AA, Pawar YP, Narkar AA (2013) Anticancer activity of betulinic acid on MCF-7 tumors in nude mice. Indian J Exp Biol 51:485–491Google Scholar
  6. 6.
    Ahangarpour A, Shabani R, Farbood Y (2018) The effect of betulinic acid on leptin, adiponectin, hepatic enzyme levels and lipid profiles in streptozotocin-nicotinamide-induced diabetic mice. Res Pharm Sci 13:142–148.  https://doi.org/10.4103/1735-5362.223796 CrossRefGoogle Scholar
  7. 7.
    Yi J, Xia W, Wu J, Yuan L, Wu J, Tu D, Fang J, Tan Z (2014) Betulinic acid prevents alcohol-induced liver damage by improving the antioxidant system in mice. J Vet Sci 15:141–148CrossRefGoogle Scholar
  8. 8.
    Brusotti G, Montanari R, Capelli D, Cattaneo G, Laghezza A, Tortorella P, Loiodice F, Peiretti F, Bonardo B, Paiardini A, Calleri E, Pochetti G (2017) Betulinic acid is a PPARgamma antagonist that improves glucose uptake, promotes osteogenesis and inhibits adipogenesis. Sci Rep 7:5777.  https://doi.org/10.1038/s41598-017-05666-6 CrossRefGoogle Scholar
  9. 9.
    Seo J, Jung J, Jang DS, Kim J, Kim JH (2017) Induction of cell death by betulinic acid through induction of apoptosis and inhibition of autophagic flux in microglia BV-2 cells. Biomol Ther (Seoul) 25:618–624.  https://doi.org/10.4062/biomolther.2016.255 CrossRefGoogle Scholar
  10. 10.
    Yang LJ, Chen Y, He J, Yi S, Wen L, Zhao J, Zhang BP, Cui GH (2012) Betulinic acid inhibits autophagic flux and induces apoptosis in human multiple myeloma cells in vitro. Acta Pharmacol Sin 33:1542–1548.  https://doi.org/10.1038/aps.2012.102 CrossRefGoogle Scholar
  11. 11.
    Vural A, Kehrl JH (2014) Autophagy in macrophages: impacting inflammation and bacterial infection. Scientifica (Cairo) 2014:825463.  https://doi.org/10.1155/2014/825463 Google Scholar
  12. 12.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075.  https://doi.org/10.1038/nature06639 CrossRefGoogle Scholar
  13. 13.
    Itakura E, Mizushima N (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:764–776CrossRefGoogle Scholar
  14. 14.
    Kroemer G (2015) Autophagy: a druggable process that is deregulated in aging and human disease. J Clin Invest 125:1–4.  https://doi.org/10.1172/JCI78652 CrossRefGoogle Scholar
  15. 15.
    Luo X, Wang D, Zhu X, Wang G, You Y, Ning Z, Li Y, Jin S, Huang Y, Hu Y, Chen T, Meng Y, Li X (2018) Autophagic degradation of caveolin-1 promotes liver sinusoidal endothelial cells defenestration. Cell Death Dis 9:576.  https://doi.org/10.1038/s41419-018-0567-0 CrossRefGoogle Scholar
  16. 16.
    Lodder J, Denaes T, Chobert MN, Wan J, El-Benna J, Pawlotsky JM, Lotersztajn S, Teixeira-Clerc F (2015) Macrophage autophagy protects against liver fibrosis in mice. Autophagy 11:1280–1292.  https://doi.org/10.1080/15548627.2015.1058473 CrossRefGoogle Scholar
  17. 17.
    Wang K, Damjanov I, Wan YY (2009) The protective role of pregnane X receptor in lipopolysaccharide/d-galactosamine-induced acute liver injury. Lab Invest J Tech Methods Pathol 90:257–265.  https://doi.org/10.1038/labinvest.2009.129 CrossRefGoogle Scholar
  18. 18.
    Liu H, Zhang Z, Hu H, Zhang C, Niu M, Li R, Wang J, Bai Z, Xiao X (2018) Protective effects of Liuweiwuling tablets on carbon tetrachloride-induced hepatic fibrosis in rats. BMC Complementary Altern Med 18:212.  https://doi.org/10.1186/s12906-018-2276-8 CrossRefGoogle Scholar
  19. 19.
    Zhang K, Gao Y, Zhong M, Xu Y, Li J, Chen Y, Duan X, Zhu H (2016) Hepatoprotective effects of Dicliptera chinensis polysaccharides on dimethylnitrosamine-induced hepatic fibrosis rats and its underlying mechanism. J Ethnopharmacol 179:38–44.  https://doi.org/10.1016/j.jep.2015.12.053 CrossRefGoogle Scholar
  20. 20.
    Lin X, Xu W, Shao M, Fan Q, Wen G, Li C, Jing L, Sun X (2015) Shenling Baizhu San supresses colitis associated colorectal cancer through inhibition of epithelial-mesenchymal transition and myeloid-derived suppressor infiltration. BMC Complementary Altern Med 15:126.  https://doi.org/10.1186/s12906-015-0649-9 CrossRefGoogle Scholar
  21. 21.
    Zhang F, Kong D, Zhang Z, Lei N, Zhu X, Zhang X, Chen L, Lu Y, Zheng S (2013) Tetramethylpyrazine induces G0/G1 cell cycle arrest and stimulates mitochondrial-mediated and caspase-dependent apoptosis through modulating ERK/p53 signaling in hepatic stellate cells in vitro. Apoptosis 18:135–149.  https://doi.org/10.1007/s10495-012-0791-5 CrossRefGoogle Scholar
  22. 22.
    Yeganeh B, Ghavami S, Kroeker AL, Mahood TH, Stelmack GL, Klonisch T, Coombs KM, Halayko AJ (2015) Suppression of influenza A virus replication in human lung epithelial cells by noncytotoxic concentrations bafilomycin A1. Am J Physiol Lung Cell Mol Physiol 308:L270–L286.  https://doi.org/10.1152/ajplung.00011.2014 CrossRefGoogle Scholar
  23. 23.
    Yokoyama T, Kondo Y, Kondo S (2007) Roles of mTOR and STAT3 in autophagy induced by telomere 3′ overhang-specific DNA oligonucleotides. Autophagy 3:496–498CrossRefGoogle Scholar
  24. 24.
    Javadov S, Jang S, Agostini B (2014) Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives. Pharmacol Ther 144:202–225.  https://doi.org/10.1016/j.pharmthera.2014.05.013 CrossRefGoogle Scholar
  25. 25.
    Martinez-Lopez N, Singh R (2014) ATGs: scaffolds for MAPK/ERK signaling. Autophagy 10:535–537.  https://doi.org/10.4161/auto.27642 CrossRefGoogle Scholar
  26. 26.
    Torok NJ (2008) Recent advances in the pathogenesis and diagnosis of liver fibrosis. J Gastroenterol 43:315–321.  https://doi.org/10.1007/s00535-008-2181-x CrossRefGoogle Scholar
  27. 27.
    Yang N, Dang S, Shi J, Wu F, Li M, Zhang X, Li Y, Jia X, Zhai S (2017) Caffeic acid phenethyl ester attenuates liver fibrosis via inhibition of TGF-beta1/Smad3 pathway and induction of autophagy pathway. Biochem Biophys Res Commun 486:22–28.  https://doi.org/10.1016/j.bbrc.2017.02.057 CrossRefGoogle Scholar
  28. 28.
    Pal A, Ganguly A, Chowdhuri S, Yousuf M, Ghosh A, Barui AK, Kotcherlakota R, Adhikari S, Banerjee R (2015) Bis-arylidene oxindole-betulinic acid conjugate: a fluorescent cancer cell detector with potent anticancer activity. ACS Med Chem Lett 6:612–616.  https://doi.org/10.1021/acsmedchemlett.5b00095 CrossRefGoogle Scholar
  29. 29.
    Oyebanji BO, Saba AB, Oridupa OA (2014) Studies on the anti-inflammatory, analgesic and antipyrexic activities of betulinic acid derived from Tetracera potatoria. Afr J Tradit Complement Altern Med 11:30–33CrossRefGoogle Scholar
  30. 30.
    Diedrich D, Wildner AC, Silveira TF, Silva G, Santos FD, Da SE, Do CV, Visioli F, Gosmann G, Bergold AM, Zimmer AR, Netz PA, Gnoatto S (2018) SERCA plays a crucial role in the toxicity of a betulinic acid derivative with potential antimalarial activity. Chem Biol Interact 287:70–77.  https://doi.org/10.1016/j.cbi.2018.03.014 CrossRefGoogle Scholar
  31. 31.
    Innocente AM, Silva GN, Cruz LN, Moraes MS, Nakabashi M, Sonnet P, Gosmann G, Garcia CR, Gnoatto SC (2012) Synthesis and antiplasmodial activity of betulinic acid and ursolic acid analogues. Molecules 17:12003–12014.  https://doi.org/10.3390/molecules171012003 CrossRefGoogle Scholar
  32. 32.
    Ulukaya S, Basturk B, Kilic M, Ulukaya E (2008) Cytokine gene polymorphism and postreperfusion syndrome during orthotopic liver transplantation. Transplant Proc 40:1290–1293.  https://doi.org/10.1016/j.transproceed.2008.01.078 CrossRefGoogle Scholar
  33. 33.
    Schneider JL, Cuervo AM (2014) Liver autophagy: much more than just taking out the trash. Nat Rev Gastroenterol Hepatol 11:187–200.  https://doi.org/10.1038/nrgastro.2013.211 CrossRefGoogle Scholar
  34. 34.
    Chen JW, Ni BB, Li B, Yang YH, Jiang SD, Jiang LS (2014) The responses of autophagy and apoptosis to oxidative stress in nucleus pulposus cells: implications for disc degeneration. Cell Physiol Biochem 34:1175–1189.  https://doi.org/10.1159/000366330 CrossRefGoogle Scholar
  35. 35.
    Zhao J, Peng L, Cui R, Guo X, Yan M (2016) Dimethyl alpha-ketoglutarate reduces CCl4-induced liver fibrosis through inhibition of autophagy in hepatic stellate cells. Biochem Biophys Res Commun 481:90–96.  https://doi.org/10.1016/j.bbrc.2016.11.010 CrossRefGoogle Scholar
  36. 36.
    Opipari AJ, Tan L, Boitano AE, Sorenson DR, Aurora A, Liu JR (2004) Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res 64:696–703CrossRefGoogle Scholar
  37. 37.
    Gu X, Wang Y, Xiang J, Chen Z, Wang L, Lu L, Qian S (2013) Interferon-gamma triggers hepatic stellate cell-mediated immune regulation through MEK/ERK signaling pathway. Clin Dev Immunol 2013:389807.  https://doi.org/10.1155/2013/389807 Google Scholar
  38. 38.
    Huang Q, Liu X, Cao C, Lei J, Han D, Chen G, Yu J, Chen L, Lv D, Li Z (2016) Apelin-13 induces autophagy in hepatoma HepG2 cells through ERK1/2 signaling pathway-dependent upregulation of Beclin1. Oncol Lett 11:1051–1056.  https://doi.org/10.3892/ol.2015.3991 CrossRefGoogle Scholar
  39. 39.
    Yue X, Zhao P, Wu K, Huang J, Zhang W, Wu Y, Liang X, He X (2016) GRIM-19 inhibition induced autophagy through activation of ERK and HIF-1alpha not STAT3 in Hela cells. Tumour Biol 37:9789–9796.  https://doi.org/10.1007/s13277-016-4877-5 CrossRefGoogle Scholar
  40. 40.
    Suzuki K, Hino M, Kutsuna H, Hato F, Sakamoto C, Takahashi T, Tatsumi N, Kitagawa S (2001) Selective activation of p38 mitogen-activated protein kinase cascade in human neutrophils stimulated by IL-1beta. J Immunol 167:5940–5947CrossRefGoogle Scholar
  41. 41.
    Zhang L, Wang H, Zhu J, Xu J, Ding K (2014) Mollugin induces tumor cell apoptosis and autophagy via the PI3K/AKT/mTOR/p70S6K and ERK signaling pathways. Biochem Biophys Res Commun 450:247–254.  https://doi.org/10.1016/j.bbrc.2014.05.101 CrossRefGoogle Scholar
  42. 42.
    Ko CP, Lin CW, Chen MK, Yang SF, Chiou HL, Hsieh MJ (2015) Pterostilbene induce autophagy on human oral cancer cells through modulation of Akt and mitogen-activated protein kinase pathway. Oral Oncol 51:593–601.  https://doi.org/10.1016/j.oraloncology.2015.03.007 CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
  2. 2.The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina

Personalised recommendations