Advertisement

Journal of Natural Medicines

, Volume 73, Issue 1, pp 163–172 | Cite as

Comprehensive evaluation of antioxidant effects of Japanese Kampo medicines led to identification of Tsudosan formulation as a potent antioxidant agent

  • Naoko Sato
  • Wei LiEmail author
  • Hiroaki Takemoto
  • Mio Takeuchi
  • Ai Nakamura
  • Emi Tokura
  • Chie Akahane
  • Kanako Ueno
  • Kana Komatsu
  • Noriko Kuriyama
  • Toshihisa Onoda
  • Koji Higai
  • Kazuo Koike
Original Paper
  • 173 Downloads

Abstract

Oxidative stress due to the overproduction of reactive oxygen species plays an important role in the pathogenesis of various diseases. In the present study, we comprehensively evaluated the antioxidant activities of 147 oral formulations of Japanese traditional herbal medicines (Kampo medicines), representing the entire panel of oral Kampo medicines listed in the Japanese National Health Insurance Drug List, using in vitro radical scavenging assays, including the 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity assay, the superoxide anion scavenging activity assay, and the oxygen radical absorption capacity assay. Three of the formulations tested, namely, Tsudosan, Daisaikoto, and Masiningan, showed the most potent in vitro antioxidant activities and were selected for further investigation of their intracellular and in vivo antioxidant effects. The results of the 2′,7′-dichlorodihydrofluorescin diacetate assay demonstrated that all three Kampo medicines significantly inhibited hydrogen peroxide-induced oxidative stress in human hepatocellular liver carcinoma HepG2 cells. In addition, Tsudosan significantly increased the serum biological antioxidant potential values when orally administrated to mice, indicating that it also had in vivo antioxidant activity. The potent antioxidant activity of Tsudosan may be one of the mechanisms closely correlated to its clinical usage against blood stasis.

Keywords

Kampo Antioxidant Daisaikoto Tsudosan Masiningan 

Notes

Acknowledgements

This investigation was supported by JSPS KAKENHI 15K08003, and the Joint Research grants of Toho University Faculty of Pharmaceutical Sciences.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247CrossRefGoogle Scholar
  2. 2.
    Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279(6):L1005–L1028CrossRefGoogle Scholar
  3. 3.
    Matsuzawa A, Saegusa K, Noguchi T, Sadamitsu C, Nishitoh H, Nagai S, Koyasu S, Matsumoto K, Takeda K, Ichijo H (2005) ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat Immunol 6(6):587–592CrossRefGoogle Scholar
  4. 4.
    Matsuda M, Shimomura I (2013) Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract 7(5):e330–e341CrossRefGoogle Scholar
  5. 5.
    Kahl R, Kappus H (1993) Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E. Z Lebensm Unters Forsch 196(4):329–338CrossRefGoogle Scholar
  6. 6.
    Takata T, Motoo Y, Tomosugi N (2014) Effect of Saikokeishito, a Kampo medicine, on hydrogen peroxide-induced premature senescence of normal human dermal fibroblasts. J Integr Med 12(6):495–503CrossRefGoogle Scholar
  7. 7.
    Matsumoto C, Sekine-Suzuki E, Nyui M, Ueno M, Nakanishi I, Omiya Y, Fukutake M, Kase Y, Matsumoto K (2015) Analysis of the antioxidative function of the radioprotective Japanese traditional (Kampo) medicine, hangeshashinto, in an aqueous phase. J Radiat Res 56(4):669–677CrossRefGoogle Scholar
  8. 8.
    Nishimura K, Osawa T, Watanabe K (2011) Evaluation of oxygen radical absorbance capacity in kampo medicine. Evid Based Complement Alternat Med 2011:812163.  https://doi.org/10.1093/ecam/nen082 CrossRefGoogle Scholar
  9. 9.
    Dudonné S, Vitrac X, Coutière P, Woillez M, Mérillon JM (2009) Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem 57(5):1768–1774CrossRefGoogle Scholar
  10. 10.
    Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity [oxygen radical absorbance capacity (ORACFL)] of plasma and other biological and food samples. J Agric Food Chem 51(11):3273–3279CrossRefGoogle Scholar
  11. 11.
    Higai K, Satake M, Nishioka H, Azuma Y, Matsumoto K (2008) Glycated human serum albumin enhances macrophage inflammatory protein-1β mRNA expression through protein kinase C-δ and NADPH oxidase in macrophage-like differentiated U937 cells. Biochim Biophys Acta 1780(2):307–314CrossRefGoogle Scholar
  12. 12.
    Pasquini A, Luchetti E, Marchetti V, Cardini G, Iorio EL (2008) Analytical performances of d-ROMs test and BAP test in canine plasma. Definition of the normal range in healthy labrador dogs. Vet Res Commun 32(2):137–143CrossRefGoogle Scholar
  13. 13.
    Kedare SB, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48(4):412–422CrossRefGoogle Scholar
  14. 14.
    Ukeda H, Kawana D, Maeda S, Sawamura M (1999) Spectrophotometric assay for superoxide dismutase based on the reduction of highly water-soluble tetrazolium salts by xanthine–xanthine oxidase. Biosci Biotechnol Biochem 63(3):485–488CrossRefGoogle Scholar
  15. 15.
    Cao G, Alessio HM, Cutler RG (1993) Oxygen-radical absorbance capacity assay for antioxidants. Free Radic Biol Med 14(3):303–311CrossRefGoogle Scholar
  16. 16.
    Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53(10):4290–4302CrossRefGoogle Scholar
  17. 17.
    Huang Q, Lu G, Shen HM, Chung MC, Ong CN (2007) Anti-cancer properties of anthraquinones from rhubarb. Med Res Rev 27(5):609–630CrossRefGoogle Scholar
  18. 18.
    Zhong XF, Huang GD, Luo T, Deng ZY, Hu JN (2012) Protective effect of rhein against oxidative stress-related endothelial cell injury. Mol Med Rep 5(5):1261–1266Google Scholar
  19. 19.
    Sakaguchi S, Tsutsumi E, Yokota K (1993) Preventive effects of a traditional Chinese medicine (sho-saiko-to) against oxygen toxicity and membrane damage during endotoxemia. Biol Pharm Bull 16(8):782–786CrossRefGoogle Scholar
  20. 20.
    Egashira T, Takayama F, Yamanaka Y, Komatsu Y (1999) Monitoring of radical scavenging activity of peroral administration of the Kampo medicine Sho-saiko-to in rats. Jpn J Pharmacol 80(4):379–382CrossRefGoogle Scholar
  21. 21.
    Iizuka A, Iijima OT, Yoshie F, Makino B, Amagaya S, Komatsu Y, Kondo K, Matsumoto A, Itakura H (1998) Inhibitory effects of Dai-saiko-to (Da-Chai-Hu-Tang) on the progression of atherosclerotic lesions in Kurosawa and Kusanagi-hypercholesterolemic rabbits. J Ethnopharmacol 63(3):209–218CrossRefGoogle Scholar
  22. 22.
    Son HJ, Lee HJ, Yun-Choi HS, Ryu JH (2000) Inhibitors of nitric oxide synthesis and TNF-alpha expression from Magnolia obovata in activated macrophages. Planta Med 66(5):469–471CrossRefGoogle Scholar
  23. 23.
    Chiu JH, Ho CT, Wei YH, Lui WY, Hong CY (1997) In vitro and in vivo protective effect of honokiol on rat liver from peroxidative injury. Life Sci 61(19):1961–1971CrossRefGoogle Scholar
  24. 24.
    Brkljača Bottegaro N, Gotić J, Šuran J, Brozić D, Klobučar K, Bojanić K, Vrbanac Z (2018) Effect of prolonged submaximal exercise on serum oxidative stress biomarkers (d-ROMs, MDA, BAP) and oxidative stress index in endurance horses. BMC Vet Res 14(1):216.  https://doi.org/10.1186/s12917-018-1540-y CrossRefGoogle Scholar
  25. 25.
    Ishikawa S, Kubo T, Sunagawa M, Tawaratsumita Y, Sato T, Ishino S, Hisamitsu T (2011) Influence of Chinese herbal medicine on reactive oxygen and blood fluidity in rats. J Jpn Soc Orient Med 62(3):337–346Google Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Naoko Sato
    • 1
    • 2
  • Wei Li
    • 1
    Email author
  • Hiroaki Takemoto
    • 1
  • Mio Takeuchi
    • 1
  • Ai Nakamura
    • 1
  • Emi Tokura
    • 1
  • Chie Akahane
    • 1
  • Kanako Ueno
    • 1
  • Kana Komatsu
    • 1
  • Noriko Kuriyama
    • 1
  • Toshihisa Onoda
    • 1
    • 2
  • Koji Higai
    • 1
  • Kazuo Koike
    • 1
  1. 1.Faculty of Pharmaceutical SciencesToho UniversityFunabashiJapan
  2. 2.Toho University Sakura Medical CenterSakuraJapan

Personalised recommendations