Advertisement

Journal of Natural Medicines

, Volume 73, Issue 1, pp 93–103 | Cite as

Pregnane glycosides from the bark of Marsdenia cundurango and their cytotoxic activity

  • Satoru Tatsuno
  • Akihito YokosukaEmail author
  • Fusako Hatsuma
  • Yuto Mashiko
  • Yoshihiro Mimaki
Original Paper
  • 191 Downloads

Abstract

Seven new pregnane glycosides (17) and eight known compounds (815) were isolated from the bark of Marsdenia cundurango (Asclepiadaceae). The structures of 17 were determined by spectroscopic analysis, including two-dimension NMR spectroscopy, chemical transformations, and chromatographic analysis of the hydrolyzed products. The isolated compounds 115 were evaluated for their cytotoxic activity against HL-60 human leukemia cells, A549 human lung adenocarcinoma cells, and TIG-3 normal human lung cells, including apoptosis-inducing activity of a representative pregnane glycoside in HL-60 cells.

Keywords

Marsdenia cundurango Asclepiadaceae Pregnane glycosides Cytotoxic activity HL-60 cell line A549 cell line TIG-3 cell line Apoptosis 

Notes

Acknowledgements

This work was financially supported in part by the Japan Society for the Promotion of Sciences (JSPS) KAKENHI (Grant number 26860069).

Supplementary material

11418_2018_1248_MOESM1_ESM.pdf (674 kb)
Supplementary material 1 (PDF 674 kb)

References

  1. 1.
    The Ministry of Health, Labour and Welfare, Japan. The Japanese pharmacopoeia, 17th edn (Ministry notification no. 64 of March 7, 2016). The Ministry of Health, Labour and Welfare, TokyoGoogle Scholar
  2. 2.
    Tschesche R, Welzel P, Snatzke G (1965) Digitanolglykoside—XII die constitution von kondurangogenin A, dem aglykon eines esterglykosids der kondurangorinde. Tetrahedron 21:1777–1795CrossRefGoogle Scholar
  3. 3.
    Tschesche R, Welzel P, Fehlhaber H (1965) Digitanolglykoside—XIII massenspektrometrische untersuchungen am kondurangogenin A. Tetrahedron 21:1797–1807CrossRefGoogle Scholar
  4. 4.
    Tschesche R, Kohl H, Welzel P (1967) Digitanolglykoside—XVI die struktur der kondurangogenine A und C. Tetrahedron 23:1461–1471CrossRefGoogle Scholar
  5. 5.
    Tschesche R, Kohl H (1968) Digitanolglykoside-XIX die struktur der kondurangoglykoside A, A1 und C, C1. Tetrahedron 24:4359–4371CrossRefGoogle Scholar
  6. 6.
    Hayashi K, Wada K, Mitsuhashi H, Bando H, Takase M, Terada S, Koide Y, Aiba T, Narita T, Mizuno D (1980) Antitumor active glycosides from Condurango cortex. Chem Pharm Bull 28:1954–1958CrossRefGoogle Scholar
  7. 7.
    Hayashi K, Wada K, Mitsuhashi H, Bando H, Takase M, Terada S, Koide Y, Aiba T, Narita T (1981) Further investigation of antitumor condurangoglycosides with C-18 oxygenated aglycone. Chem Pharm Bull 29:2725–2730CrossRefGoogle Scholar
  8. 8.
    Berger S, Junior P, Kopanski L (1988) Structural revision of pregnane ester glycosides from Condurango cortex and new compounds. Phytochemistry 27:1451–1458CrossRefGoogle Scholar
  9. 9.
    Umehara K, Endoh M, Miyase T, Kuroyanagi M, Ueno A (1994) Studies on differentiation inducers. Pregnane derivatives from Condurango cortex. Chem Pharm Bull 42:611–616CrossRefGoogle Scholar
  10. 10.
    Sikdar S, Mukherjee A, Boujedaini N, Khuda-Bukhsh AR (2013) Ethanolic extract of Condurango (Marsdenia condurango) used in traditional systems of medicine including homeopathy against cancer can induce DNA damage and apoptosis in non small lung cancer cells, A549 and H522, in vitro. Tang Humanit Med 3:e9Google Scholar
  11. 11.
    Sikdar S, Mukherjee A, Ghosh S, Khuda-Bukhsh AR (2014) Codurango glycoside-rich components stimulate DNA damage-induced cell cycle arrest and ROS-mediated caspase-3 dependent apoptosis through inhibition of cell-proliferation in lung cancer, in vitro and in vivo. Environ Toxicol Pharmacol 37:300–331CrossRefGoogle Scholar
  12. 12.
    Yokosuka A, Mimaki Y, Sashida Y (2002) Steroidal and pregnane glycosides from the rhizomes of Tacca chantrieri. J Nat Prod 65:1293–1298CrossRefGoogle Scholar
  13. 13.
    Kubo A, Kuroda M, Yokosuka A, Sakagami H, Mimaki Y (2015) Amurensiosides L-P, five new cardenolide glycosides from the roots of Adonis amurensis. Nat Prod Commun 10:27–32Google Scholar
  14. 14.
    Yokosuka A, Iguchi T, Kawahata R, Mimaki Y (2018) Cytotoxic bufadienolides from the whole plants of Helleborus foetidus. Phytochem Lett 23:94–99CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Yuan J, Ding W (1993) Structural elucidation of marsdeoreophiside A. Zhongcaoyao 24:171–173Google Scholar
  16. 16.
    Allgeier H (1968) Struktur der pachybiose und asclepobiose. Helv Chim Acta 51:311–325CrossRefGoogle Scholar
  17. 17.
    Gupta VS, Kumar A, Deepak D, Khare A, Khare NK (2003) Pregnanes and pregnane glycosides from Marsdenia roylei. Phytochemistry 64:1327–1333CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Satoru Tatsuno
    • 1
  • Akihito Yokosuka
    • 1
    Email author
  • Fusako Hatsuma
    • 1
  • Yuto Mashiko
    • 1
  • Yoshihiro Mimaki
    • 1
  1. 1.Department of Medicinal Pharmacognosy, School of PharmacyTokyo University of Pharmacy and Life SciencesHachiojiJapan

Personalised recommendations