Journal of Natural Medicines

, Volume 73, Issue 1, pp 262–272 | Cite as

Geraniin promotes osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) via activating β-catenin: a comparative study between BMSCs from normal and osteoporotic rats

  • Jiao Mo
  • Renhua Yang
  • Fan Li
  • Bo He
  • Xiaochao Zhang
  • Yuqin Zhao
  • Zhiqiang ShenEmail author
  • Peng ChenEmail author


Abnormal osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) has been correlated with the pathogenesis of osteoporosis. Geraniin, a polyphenolic compound isolated from Phyllanthus amarus, is effective in preventing osteoporosis, but the mechanisms of action of geraniin and the impact of osteoporotic condition on drug action are not known. In this study we compared the proliferation and osteoblastic differentiation potential of BMSCs from normal rats with that from osteoporotic rats, and examined the responses of both BMSCs to geraniin in parallel. BMSCs of rats subjected to ovariectomy or sham operation were isolated and treated with geraniin. Cell proliferation was measured by CCK-8 assay. Osteoblastic differentiation was quantified by Alizarin Red S staining and alkaline phosphatase assay. Nuclear translocation of β-catenin was monitored by immunofluorescent staining. Expression of β-catenin was determined by Western blot and quantitative real-time polymerase chain reaction. Results showed that the proliferation and osteoblast formation of osteoporotic BMSCs decreased in comparison to that of normal BMSCs. Geraniin enhanced proliferation and osteoblastic differentiation of both BMSCs, but the responses of osteoporotic BMSCs to geraniin were less than those of normal BMSCs. Expression and nuclear accumulation of β-catenin in osteoporotic BMSCs were found to be diminished. Geraniin increased nuclear translocation and expression of β-catenin in both BMSCs. This study associated the osteogenic effect of geraniin to activation of Wnt/β-catenin signaling, and provided rationale for pharmacological investigation of geraniin in osteoporosis prevention and treatment.


Osteoporosis Geraniin Mesenchymal stem cells β-Catenin Osteogenesis 



This work was supported by the National Natural Science Foundation of China [grant numbers 81660613, 81260493] and the Natural Science Foundation of Yunnan Province, P.R. China [number 2015FA021].

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest and that they have no financial relationship with the organization that sponsored the research.


  1. 1.
    Das S, Crockett JC (2013) Osteoporosis—a current view of pharmacological prevention and treatment. Drug Des Dev Ther 7:435–448. Google Scholar
  2. 2.
    Armstrong VJ, Muzylak M, Sunters A, Zaman G, Saxon LK, Price JS, Lanyon LE (2007) Wnt/beta-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor alpha. J Biol Chem 282:20715–20727. CrossRefGoogle Scholar
  3. 3.
    Bhukhai K, Suksen K, Bhummaphan N, Janjorn K, Thongon N, Tantikanlayaporn D, Piyachaturawat P, Suksamrarn A, Chairoungdua A (2012) A phytoestrogen diarylheptanoid mediates estrogen receptor/Akt/glycogen synthase kinase 3beta protein-dependent activation of the Wnt/beta-catenin signaling pathway. J Biol Chem 287:36168–36178. CrossRefGoogle Scholar
  4. 4.
    Shoback D (2007) Update in osteoporosis and metabolic bone disorders. J Clin Endocrinol Metab 92:747–753. CrossRefGoogle Scholar
  5. 5.
    Saeed H, Ahsan M, Saleem Z, Iqtedar M, Islam M, Danish Z, Khan AM (2016) Mesenchymal stem cells (MSCs) as skeletal therapeutics—an update. J Biomed Sci 23:41. CrossRefGoogle Scholar
  6. 6.
    Rosen CJ, Bouxsein ML (2006) Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2(1):35–43. CrossRefGoogle Scholar
  7. 7.
    Hoeppner LH, Secreto FJ, Westendorf JJ (2009) Wnt signaling as a therapeutic target for bone diseases. Expert Opin Ther Target 13:485–496. CrossRefGoogle Scholar
  8. 8.
    Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM (2009) Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukar Gene Expr 19:109–124CrossRefGoogle Scholar
  9. 9.
    Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ (2012) Update on Wnt signaling in bone cell biology and bone disease. Gene 492:1–18. CrossRefGoogle Scholar
  10. 10.
    Patel JR, Tripathi P, Sharma V, Chauhan NS, Dixit VK (2011) Phyllanthus amarus: ethnomedicinal uses, phytochemistry and pharmacology: a review. J Ethnopharmacol 138:286–313. CrossRefGoogle Scholar
  11. 11.
    Lu Y, He B, Zhang X, Yang R, Li S, Song B, Zhang Y, Yun Y, Yan H, Chen P, Shen Z (2015) Osteoprotective effect of geraniin against ovariectomy-induced bone loss in rats. Bioorg Med Chem Lett 25:673–679. CrossRefGoogle Scholar
  12. 12.
    He B, Hu M, Li SD, Yang XT, Lu YQ, Liu JX, Chen P, Shen ZQ (2013) Effects of geraniin on osteoclastic bone resorption and matrix metalloproteinase-9 expression. Bioorg Med Chem Lett 23:630–634. CrossRefGoogle Scholar
  13. 13.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. Cytotherapy 8:315–317. CrossRefGoogle Scholar
  14. 14.
    Li F, Wang X, Niyibizi C (2010) Bone marrow stromal cells contribute to bone formation following infusion into femoral cavities of a mouse model of osteogenesis imperfecta. Bone 47:546–555. CrossRefGoogle Scholar
  15. 15.
    Marx RE, Sawatari Y, Fortin M, Broumand V (2005) Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg 63:1567–1575. CrossRefGoogle Scholar
  16. 16.
    Thompson RN, Phillips JR, McCauley SH, Elliott JR, Moran CG (2012) Atypical femoral fractures and bisphosphonate treatment: experience in two large United Kingdom teaching hospitals. J Bone Joint Surg Br 94:385–390. CrossRefGoogle Scholar
  17. 17.
    Watanabe A, Yoneyama S, Nakajima M, Sato N, Takao-Kawabata R, Isogai Y, Sakurai-Tanikawa A, Higuchi K, Shimoi A, Yamatoya H, Yoshida K, Kohira T (2012) Osteosarcoma in Sprague–Dawley rats after long-term treatment with teriparatide (human parathyroid hormone (1-34)). J Toxicol Sci 37:617–629CrossRefGoogle Scholar
  18. 18.
    Andrews EB, Gilsenan AW, Midkiff K, Sherrill B, Wu Y, Mann BH, Masica D (2012) The US postmarketing surveillance study of adult osteosarcoma and teriparatide: study design and findings from the first 7 years. J Bone Miner Res 27:2429–2437. CrossRefGoogle Scholar
  19. 19.
    Fan JZ, Yang L, Meng GL, Lin YS, Wei BY, Fan J, Hu HM, Liu YW, Chen S, Zhang JK, He QZ, Luo ZJ, Liu J (2014) Estrogen improves the proliferation and differentiation of hBMSCs derived from postmenopausal osteoporosis through notch signaling pathway. Mol Cell Biochem 392:85–93. CrossRefGoogle Scholar
  20. 20.
    Rodriguez JP, Garat S, Gajardo H, Pino AM, Seitz G (1999) Abnormal osteogenesis in osteoporotic patients is reflected by altered mesenchymal stem cells dynamics. Mol Cell Biochem 75:414–423CrossRefGoogle Scholar
  21. 21.
    Wang Z, Goh J, De Das S, Ge Z, Ouyang H, Chong JS, Low SL, Lee EH (2006) Efficacy of bone marrow-derived stem cells in strengthening osteoporotic bone in a rabbit model. Tissue Eng 12:1753–1761. CrossRefGoogle Scholar
  22. 22.
    Pino AM, Rosen CJ, Rodriguez JP (2012) In osteoporosis, differentiation of mesenchymal stem cells (MSCs) improves bone marrow adipogenesis. Biol Res 45:279–287. CrossRefGoogle Scholar
  23. 23.
    Wang D, Wang Y, Xu S, Wang F, Wang B, Han K, Sun D, Li L (2016) Epigallocatechin-3-gallate protects against hydrogen peroxide-induced inhibition of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Stem Cells Int 2016:7532798. Google Scholar
  24. 24.
    Gao B, Huang Q, Lin YS, Wei BY, Guo YS, Sun Z, Wang L, Fan J, Zhang HY, Han YH, Li XJ, Shi J, Liu J, Yang L, Luo ZJ (2014) Dose-dependent effect of estrogen suppresses the osteo-adipogenic transdifferentiation of osteoblasts via canonical Wnt signaling pathway. PLoS One 9:e99137. CrossRefGoogle Scholar
  25. 25.
    Jin C, Zhang P, Zhang M, Zhang X, Lv L, Liu H, Liu Y, Zhou Y (2016) Inhibition of SLC7A11 by sulfasalazine enhances osteogenic differentiation of mesenchymal stem cells by modulating BMP2/4 expression and suppresses bone loss in ovariectomized mice. J Bone Miner Res 32:508–521. CrossRefGoogle Scholar
  26. 26.
    Wang C, Wang J, Li J, Hu G, Shan S, Li Q, Zhang X (2016) KDM5A controls bone morphogenic protein 2-induced osteogenic differentiation of bone mesenchymal stem cells during osteoporosis. Cell Death Dis 7:e2335. CrossRefGoogle Scholar
  27. 27.
    Li K, Zhang X, He B, Yang R, Zhang Y, Shen Z, Chen P, Du W (2018) Geraniin promotes osteoblast proliferation and differentiation via the activation of Wnt/beta-catenin pathway. Biomed Pharmacother 99:319–324. CrossRefGoogle Scholar
  28. 28.
    Baron R, Rawadi G (2007) Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 148:2635–2643. CrossRefGoogle Scholar
  29. 29.
    Kobayashi Y, Uehara S, Udagawa N, Takahashi N (2016) Regulation of bone metabolism by Wnt signals. J Biochem 159:387–392. CrossRefGoogle Scholar
  30. 30.
    Jing H, Liao L, An Y, Su X, Liu S, Shuai Y, Zhang X, Jin Y (2016) Suppression of EZH2 prevents the shift of osteoporotic MSC fate to adipocyte and enhances bone formation during osteoporosis. Mol Ther 24:217–229. CrossRefGoogle Scholar
  31. 31.
    Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GCM, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Jüppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard M-J, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523. CrossRefGoogle Scholar
  32. 32.
    Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao S-C, Eustace B, Lappe MM, Spitzer L, Zweier S, Braunschweiger K, Benchekroun Y, Hu X, Adair R, Chee L, FitzGerald MG, Tulig C, Caruso A, Tzellas N, Bawa A, Franklin B, McGuire S, Nogues X, Gong G, Allen KM, Anisowicz A, Morales AJ, Lomedico PT, Recker SM, Van Eerdewegh P, Recker RR, Johnson ML (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high–bone-mass trait. Am J Hum Genet 70:11–19CrossRefGoogle Scholar
  33. 33.
    Holmen SL, Giambernardi TA, Zylstra CR, Buckner-Berghuis BD, Resau JH, Hess JF, Glatt V, Bouxsein ML, Ai M, Warman ML, Williams BO (2004) Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J Bone Miner Res 19:2033–2040. CrossRefGoogle Scholar
  34. 34.
    Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC (2000) An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407:535–538. CrossRefGoogle Scholar
  35. 35.
    Yu H-MI, Jerchow B, Sheu T-J, Liu B, Costantini F, Puzas JE, Birchmeier W, Hsu W (2005) The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development 132:1995CrossRefGoogle Scholar
  36. 36.
    Yan Y, Tang D, Chen M, Huang J, Xie R, Jonason JH, Tan X, Hou W, Reynolds D, Hsu W, Harris SE, Puzas JE, Awad H, Keefe RJ, Boyce BF, Chen D (2009) Axin2 controls bone remodeling through the β-catenin–BMP signaling pathway in adult mice. J Cell Sci 122:3566CrossRefGoogle Scholar
  37. 37.
    Futami I, Ishijima M, Kaneko H, Tsuji K, Ichikawa-Tomikawa N, Sadatsuki R, Muneta T, Arikawa-Hirasawa E, Sekiya I, Kaneko K (2012) Isolation and characterization of multipotential mesenchymal cells from the mouse synovium. PLoS One 7:e45517. CrossRefGoogle Scholar
  38. 38.
    Li F, Wang X, Niyibizi C (2007) Distribution of single-cell expanded marrow derived progenitors in a developing mouse model of osteogenesis imperfecta following systemic transplantation. Stem Cells 25:3183–3193. CrossRefGoogle Scholar
  39. 39.
    Wang C, Jin H, Wang N, Fan S, Wang Y, Zhang Y, Wei L, Tao X, Gu D, Zhao F, Fang J, Yao M, Qin W (2016) Gas6/Axl Axis contributes to chemoresistance and metastasis in breast cancer through Akt/GSK-3beta/beta-catenin signaling. Theranostics 6:1205–1219. CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural ProductsKunming Medical UniversityKunmingPeople’s Republic of China

Personalised recommendations