Journal of Natural Medicines

, Volume 73, Issue 1, pp 47–58 | Cite as

Cycloartane triterpenoid (23R, 24E)-23-acetoxymangiferonic acid inhibited proliferation and migration in B16-F10 melanoma via MITF downregulation caused by inhibition of both β-catenin and c-Raf–MEK1–ERK signaling axis

  • Toshio Kaneda
  • Misaki Matsumoto
  • Yayoi Sotozono
  • Satoshi Fukami
  • Alfarius Eko Nugroho
  • Yusuke Hirasawa
  • Hadi A. Hamid A
  • Hiroshi MoritaEmail author
Original Paper


We recently reported that (23R, 24E)-23-acetoxymangiferonic acid (23R-AMA), a cycloartane triterpenoid isolated by activity-guided separation from a methanol extract of Garcinia sp. bark, inhibited melanin production via inhibition of tyrosinase (TYR) expression in the B16-F10 melanoma cell line. Since 23R-AMA also inhibited microphthalmia-associated transcription factor (MITF) expression, an upstream factor of TYR, these features of 23R-AMA were thought to be appropriate for development of whitening cosmetics. However, 23R-AMA exhibited growth inhibition other than inhibition of melanin production in B16-F10 cells. Therefore, we investigated biological activities of 23R-AMA in detail, focused on its application as an anti-melanoma compound. In this study, we demonstrated that 23R-AMA inhibited cell proliferation and basic FGF (bFGF)-induced migration in B16-F10 cells. Furthermore, 23R-AMA promoted ser45/thr41 phosphorylation of β-catenin and suppressed its intranuclear accumulation, which was suggested to be related to inhibition of MITF expression. The transcriptional activity of MITF is known to be regulated by phosphorylation via activated ERK. Further investigation revealed that 23R-AMA inhibited phosphorylation of c-Raf, MEK-1, and ERK, and also that of upstream molecules including FAK and c-Src. These results suggested that 23R-AMA inhibited growth and migration of B16-F10 melanoma by regulating both MITF expression and its activity. The activities of 23R-AMA reported in this study are new aspects of cycloartane triterpenoids.


Garcinia Triterpenoids Cycloartane Melanoma MITF β-Catenin ERK c-Raf 



This work was supported by Grants in-Aid for Scientific Research from The Japan Society for the Promotion of Science, Japan.

Supplementary material

11418_2018_1233_MOESM1_ESM.pdf (337 kb)
Supplementary material 1 (PDF 336 kb)


  1. 1.
    D’Mello SAN, Finlay GJ, Baguley BC, Askarian-Amiri ME (2016) Signaling pathways in melanogenesis. Int J Mol Sci 17:1144CrossRefGoogle Scholar
  2. 2.
    Matthews NH, Li W-Q, Qureshi AA, Weinstock MA, Cho E (2017) Epidemiology of melanoma. In: Ward WH, Farma JM (eds) Cutaneous melanoma: etiology and therapy. Codon, BrisbaneGoogle Scholar
  3. 3.
    Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, Beroukhim R, Milner DA, Granter SR, Du J, Lee C, Wagner SN, Li C, Golub TR, Rimm DL, Meyerson ML, Fisher DE, Sellers WR (2005) Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436:117CrossRefGoogle Scholar
  4. 4.
    Vachtenheim J, Novotna H (1999) Expression of genes for microphthalmia isoforms, Pax3 and MSG1, in human melanomas. Cell Mol Biol 45:1075–1082Google Scholar
  5. 5.
    Larribere L, Hilmi C, Khaled M, Gaggioli C, Bille K, Auberger P, Ortonne JP, Ballotti R, Bertolotto C (2005) The cleavage of microphthalmia-associated transcription factor, MITF, by caspases plays an essential role in melanocyte and melanoma cell apoptosis. Genes Dev 19:1980–1985CrossRefGoogle Scholar
  6. 6.
    Nugroho AE, Matsumoto M, Sotozono Y, Kaneda T, Hadi AHA, Morita H (2018) Cycloartane triterpenoids with anti-melanin deposition activity. Nat Prod Commun 13(7):809–812Google Scholar
  7. 7.
    Anjaneyulu V, Satyanarayana P, Viswanadham KN, Jyothi VG, Rao KN, Radhika P (1999) Triterpenoids from Mangifera indica. Phytochemistry 50:1229–1236CrossRefGoogle Scholar
  8. 8.
    Sakagami Y, Iinuma M, Piyasena KG, Dharmaratne HR (2005) Antibacterial activity of alpha-mangostin against vancomycin resistant Enterococci (VRE) and synergism with antibiotics. Phytomedicine 12:203–208CrossRefGoogle Scholar
  9. 9.
    Jena BS, Jayaprakasha GK, Singh RP, Sakariah KK (2002) Chemistry and biochemistry of (−)-hydroxycitric acid from Garcinia. J Agric Food Chem 50:10–22CrossRefGoogle Scholar
  10. 10.
    Zhang H-Z, Kasibhatla S, Wang Y, Herich J, Guastella J, Tseng B, Drewe J, Cai SX (2004) Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorg Med Chem 12:309–317CrossRefGoogle Scholar
  11. 11.
    Toume K, Nakazawa T, Hoque T, Ohtsuki T, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M (2012) Cycloartane triterpenes and ingol diterpenes isolated from Euphorbia neriifolia in a screening program for death-receptor expression-enhancing activity. Planta Med 78:1370–1377CrossRefGoogle Scholar
  12. 12.
    Toume K, Nakazawa T, Ohtsuki T, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M (2011) Cycloartane triterpenes isolated from Combretum quadrangulare in a screening program for death-receptor expression enhancing activity. J Nat Prod 74:249–255CrossRefGoogle Scholar
  13. 13.
    Khan MTH, Khan SB, Ather A (2006) Tyrosinase inhibitory cycloartane type triterpenoids from the methanol extract of the whole plant of Amberboa ramosa Jafri and their structure-activity relationship. Bioorg Med Chem 14:938–943CrossRefGoogle Scholar
  14. 14.
    Schreiber E, Matthias P, Müller MM, Schaffner W (1989) Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res 17:6419CrossRefGoogle Scholar
  15. 15.
    Tachibana M (2000) MITF: a stream flowing for pigment cells. Pigment Cell Res 13:230–240CrossRefGoogle Scholar
  16. 16.
    Maher MT, Mo R, Flozak AS, Peled ON, Gottardi CJ (2010) β-Catenin phosphorylated at serine 45 is spatially uncoupled from β-catenin phosphorylated in the GSK3 domain: implications for signaling. PLoS One 5:e10184CrossRefGoogle Scholar
  17. 17.
    McGill GG, Haq R, Nishimura EK, Fisher DE (2006) c-Met expression is regulated by mitf in the melanocyte lineage. J Biol Chem 281:10365–10373CrossRefGoogle Scholar
  18. 18.
    Wu M, Hemesath TJ, Takemoto CM, Horstmann MA, Wells AG, Price ER, Fisher DZ, Fisher DE (2000) c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev 14:301–312Google Scholar
  19. 19.
    Gear H, Williams H, Kemp EG, Roberts F (2004) BRAF mutations in conjunctival melanoma. Invest Ophthalmol Vis Sci 45:2484–2488CrossRefGoogle Scholar
  20. 20.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JWC, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417:949CrossRefGoogle Scholar
  21. 21.
    Kolch W (2000) Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 351:289–305CrossRefGoogle Scholar
  22. 22.
    Frame MC (2004) Newest findings on the oldest oncogene; how activated src does it. J Cell Sci 117:989–998CrossRefGoogle Scholar
  23. 23.
    Bosnjak M, Dolinsek T, Cemazar M, Kranjc S, Blagus T, Markelc B, Stimac M, Zavrsnik J, Kamensek U, Heller L, Bouquet C, Turk B, Sersa G (2015) Gene electrotransfer of plasmid AMEP, an integrin-targeted therapy, has antitumor and antiangiogenic action in murine B16 melanoma. Gene Ther 22:578CrossRefGoogle Scholar
  24. 24.
    Qian F, Vaux DL, Weissman IL (1994) Expression of the integrin α4β1 on melanoma cells can inhibit the invasive stage of metastasis formation. Cell 77:335–347CrossRefGoogle Scholar
  25. 25.
    Wang D, Ma Z (2009) Cytotoxic activity of cycloartane triterpenoids from Sphaerophysa salsula. Nat Prod Commun 4:23–25Google Scholar
  26. 26.
    Li F, Awale S, Zhang H, Tezuka Y, Esumi H, Kadota S (2009) Chemical constituents of propolis from Myanmar and their preferential cytotoxicity against a human pancreatic cancer cell line. J Nat Prod 72:1283–1287CrossRefGoogle Scholar
  27. 27.
    Tian Z, Si J, Chang Q, Zhou L, Chen S, Xiao P, Wu E (2007) Antitumor activity and mechanisms of action of total glycosides from aerial part of Cimicifuga dahurica targeted against hepatoma. BMC Cancer 7:237–237CrossRefGoogle Scholar
  28. 28.
    McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, Lin Y-L, Ramaswamy S, Avery W, Ding H-F, Jordan SA, Jackson IJ, Korsmeyer SJ, Golub TR, Fisher DE (2002) Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109:707–718CrossRefGoogle Scholar
  29. 29.
    Du J, Widlund HR, Horstmann MA, Ramaswamy S, Ross K, Huber WE, Nishimura EK, Golub TR, Fisher DE (2004) Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell 6:565–576CrossRefGoogle Scholar
  30. 30.
    Marais R, Light Y, Paterson HF, Marshall CJ (1995) Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J 14:3136–3145CrossRefGoogle Scholar
  31. 31.
    Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, Chen Z, Lee M-K, Attar N, Sazegar H, Chodon T, Nelson SF, McArthur G, Sosman JA, Ribas A, Lo RS (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973CrossRefGoogle Scholar
  32. 32.
    Montagut C, Sharma SV, Shioda T, McDermott U, Ulman M, Ulkus LE, Dias-Santagata D, Stubbs H, Lee DY, Singh A, Drew L, Haber DA, Settleman J (2008) Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res 68:4853–4861CrossRefGoogle Scholar
  33. 33.
    Schlaepfer DD, Hauck CR, Sieg DJ (1999) Signaling through focal adhesion kinase. Prog Biophys Mol Biol 71:435–478CrossRefGoogle Scholar
  34. 34.
    Kuphal S, Bauer R, Bosserhoff A-K (2005) Integrin signaling in malignant melanoma. Cancer Metastasis Rev 24:195–222CrossRefGoogle Scholar
  35. 35.
    Aznavoorian S, Stracke ML, Parsons J, McClanahan J, Liotta LA (1996) Integrin αvβ3 mediates chemotactic and haptotactic motility in human melanoma cells through different signaling pathways. J Biol Chem 271:3247–3254CrossRefGoogle Scholar
  36. 36.
    Frame MC (2002) Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta 1602:114–130Google Scholar
  37. 37.
    Ferguson J, Arozarena I, Ehrhardt M, Wellbrock C (2013) Combination of MEK and SRC inhibition suppresses melanoma cell growth and invasion. Oncogene 32:86–96CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Toshio Kaneda
    • 1
  • Misaki Matsumoto
    • 1
  • Yayoi Sotozono
    • 1
  • Satoshi Fukami
    • 1
  • Alfarius Eko Nugroho
    • 1
  • Yusuke Hirasawa
    • 1
  • Hadi A. Hamid A
    • 2
  • Hiroshi Morita
    • 1
    Email author
  1. 1.Faculty of Pharmaceutical SciencesHoshi UniversityTokyoJapan
  2. 2.Department of Chemistry, Faculty of ScienceUniversity MalayaKuala LumpurMalaysia

Personalised recommendations