Journal of Natural Medicines

, Volume 73, Issue 1, pp 34–46 | Cite as

Effects of fermented Sorghum bicolor L. Moench extract on inflammation and thickness in a vascular cell and atherosclerotic mice model

  • Young Min Ham
  • Hae Seong Song
  • Jeong Eun Kwon
  • Hyelin Jeon
  • Hyun Jin Baek
  • Chang Won Kim
  • Weon-Jong Yoon
  • Eui Su Choung
  • Se Chan KangEmail author
Original Paper


Atherosclerosis is a major cause of coronary heart disease. As a result of the development of atherosclerotic lesions, the walls of blood vessels become thicker and inhibit blood circulation. Atherosclerosis is caused by a high-fat diet and vascular injury. Chronic arterial inflammation plays an important role in the pathogenesis of atherosclerosis. In particular, secretion of the pro-atherogenic cytokine tumor necrosis factor-α induces expression of endothelial adhesion molecules including P-selectin, vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1), which mediate attachment of circulating monocytes and lymphocytes. In this study, we examined the anti-atherosclerotic effect of sorghum, which is known to have anti-oxidant and anti-inflammatory activity. A 50% ethanol extract of Sorghum bicolor L. Moench fermented with Aspergillus oryzae NK (fSBE) was used for experiments. In vitro expression of endothelial adhesion molecules VCAM-1 and ICAM-1 and pro-inflammatory factor cyclooxygenase-2 was significantly decreased and that of the anti-atherogenic factor heme oxygenase-1 significantly increased by fSBE (P < 0.05). At the in vivo level, we examined fat droplets of liver tissue, and aortic thickness via histological analysis, and determined the blood lipid profile through chemical analysis. fSBE at a dose of 200 mg/kg significantly improved blood and vascular health (P < 0.05). Taken together, these results demonstrate that fSBE has potential as a therapeutic anti-atherosclerotic agent.


Sorghum bicolor Aspergillus oryzae Fermentation Anti-inflammation Anti-atherogenic 



This research was supported by the Ministry of Trade, Industry & Energy (MOTIE), Korea Institute for Advancement of Technology (KIAT) through the Encouragement Program for The Industries of Economic Cooperation Region (R0000429).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hasan ST, Zingg J-M, Kwan P, Noble T, Smith D, Meydani M (2014) Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Atherosclerosis 232:40–51CrossRefGoogle Scholar
  2. 2.
    Nakagawa K, Nakashima Y (2018) Pathologic intimal thickening in human atherosclerosis is foamed by cellular accumulation of plasma-derived lipids and dispersion of intimal smooth muscle cells. Atherosclerosis. Google Scholar
  3. 3.
    Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143CrossRefGoogle Scholar
  4. 4.
    Sprague AH, Khalil RA (2009) Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 78:539–552CrossRefGoogle Scholar
  5. 5.
    Schmitz B, Vischer P, Brand E, Schmidt-Petersen K, Korb-Pap A, Guske K, Nedele J, Schelleckes M, Hillen J, Rotrige A, Simmet T, Paul M, Cambien F, Brand SM (2013) Increased monocyte adhesion by endothelial expression of VCAM-1 missense variation in vitro. Atherosclerosis 230:185–190CrossRefGoogle Scholar
  6. 6.
    Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801CrossRefGoogle Scholar
  7. 7.
    Ahn SY, Cho CH, Park KG, Lee HJ, Lee S, Park SK, Lee IK, Koh GY (2004) Tumor necrosis factor-alpha induces fractalkine expression preferentially in arterial endothelial cells and mithramycin A suppresses TNF alpha-induced fractalkine expression. Am J Pathol 164:1663–1672CrossRefGoogle Scholar
  8. 8.
    Knorr M, Munzel T, Wenzel P (2014) Interplay of NK cells and monocytes in vascular inflammation and myocardial infarction. Front Physiol 5:1–7CrossRefGoogle Scholar
  9. 9.
    Merhi-Soussi F, Kwak BR, Magne D, Chadjichristos C, Berti M, Pelli G, James RW, Mach F, Gabay C (2005) Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice. Cardiovasc Res 66:583–593CrossRefGoogle Scholar
  10. 10.
    Lin CC, Pan CH, Wang CY, Liu SW, Hsiao LD, Yang CM (2015) Tumor necrosis factor-alpha induces VCAM-1-mediated inflammation via c-Src-dependent transactivation of EGF receptors in human cardiac fibroblasts. J Biomed Sci 22:1–15CrossRefGoogle Scholar
  11. 11.
    Vanamal JKP, Massey AR, Pinnamaneni SR, Reddivari L, Reardon KF (2017) Grain and sweet sorghum (Sorghum bicolor L. Moench) serves as a novel source of bioactive compounds for human health. Crit Rev Food Sci Nutr.
  12. 12.
    Sènou M, Tchogou AP, Dougnon TV, Agossadou A, Assogba F, Kinsiclounon EG, Koudokpon H, Fah L, Fanou B, Akpovi DC, Énou GBJ, Lalèyè A, Loko F (2016) Efficiency of Sorghum bicolor extract in the treatment of induced anemia on Wistar rats. Int J Biosci 8:62–71CrossRefGoogle Scholar
  13. 13.
    Ademiluyi AO, Oboh G, Agbebi OJ, Boligon AA, Athayde ML (2014) Sorghum [Sorghum bicolor (L.) Moench] leaf sheath dye protects against cisplatin-induced hepatotoxicity and oxidative stress in rats. J Med Food 17:1332–1338CrossRefGoogle Scholar
  14. 14.
    Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L (2003) Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J Agric Food Chem 51:6657–6662CrossRefGoogle Scholar
  15. 15.
    Awika JM, Yang L, Browning JD, Faraj A (2009) Comaparative antioxidant, antiproliferative and phage II enzyme inducing potential of sorghum (Sorghum bicolor) varieties. LWT Food Sci Tech 42:1041–1046CrossRefGoogle Scholar
  16. 16.
    Soetank O, Oyekunle MA, Aiyelaagbe OO, Fafunso MA (2006) Evaluation of the antimicrobial activity of saponins extract of Sorghum bicolor L. Moench. Afr J Biotechnol 5:2405–2407Google Scholar
  17. 17.
    Zhang MW, Park MH, Kim M (2016) Study on antioxidant activity and cytotoxicity in cancer cells of extract from waxy sorghum fermented with Phellinus linteus mycelium. J East Asian Soc Diet Life 26:418–426CrossRefGoogle Scholar
  18. 18.
    Hong KJ, Lee CH, Kim SW (2004) Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J Med Food 7:430–435CrossRefGoogle Scholar
  19. 19.
    Nakashima Y, Raines EW, Plump AS, Breslow JL, Ross R (1998) Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol 15:842–851CrossRefGoogle Scholar
  20. 20.
    Hwang SJ, Ballantyne CM, Sharrett AR, Smith LC, Davis CE, Gotto AM Jr, Boerwinkle E (1997) Circulating adhesion molecules VCAM-1, ICAM-1 and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) study. Circulation 96:4219–4225CrossRefGoogle Scholar
  21. 21.
    Jiang Y, Jiang LLI, Maimaitirexiati XMZY, Zhang Y, Wu L (2015) Irbesartan attenuates TNF-a-induced ICAM-1, VCAM-1, and E-selectin expression through suppression of NF-κB pathway in HUVECs. Eur Rev Med Pharmacol Sci 19:3295–3302Google Scholar
  22. 22.
    Zhu YP, Shen T, Lin YJ, Chen BD, Ruan Y, Cao Y, Qiao Y, Man Y, Wang W, Li J (2013) Astragalus polysaccharides suppress ICAM-1 and VCAM-1 expression in TNF-a-treated human vascular endothelial cells by blocking NF-κB activation. Acta Pharmacol Sin 34:1036–1042CrossRefGoogle Scholar
  23. 23.
    Linton MF, Fazio S (2004) Cyclooxygenase-2 and inflammation in atherosclerosis. Curr Opin Pharmacol 4:116–123CrossRefGoogle Scholar
  24. 24.
    Wu BJ, Kathir K, Witting PK, Beck K, Choy K, Li C, Croft KD, Mori TA, Tanous D, Adams MR, Lau AK, Stocker R (2006) Antioxidants protect from atherosclerosis by a heme oxygenase-1 pathway that is independent of free radical scavenging. J Exp Med 203:1117–1127CrossRefGoogle Scholar
  25. 25.
    Badimon L, Vilahur G, Padro T (2009) Lipoproteins, platelets and atherothrombosis. Rev Esp Cardiol 62:1161–1178CrossRefGoogle Scholar
  26. 26.
    Badimon L, Storey RF, Vilahur G (2011) Updateon lipids, inflammation and atherothrombosis. Thromb Haemost 105(Suppl 1):S34–S42Google Scholar
  27. 27.
    Madamanchi NR, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29–38CrossRefGoogle Scholar
  28. 28.
    Linz PE, Lovato LC, Byington RP, O’Connor PJ, Leiter LA, Weiss D, Force RW, Crouse JR, Ismail-Beigi F, Simmons DL, Papademetriou V, Ginsberg HN, Elam MB (2014) Paradoxical reduction in HDL-C with fenofibrate and thiazolidinedione therapy in type 2 diabetes: the ACCORD lipid trial. Diabetes Care 37:686–693CrossRefGoogle Scholar
  29. 29.
    Duane WC, Hunninghake DB, Freeman ML, Pooler PA, Schlasner LA, Gebhard RL (1988) Simvastatin, a competitive inhibitor of HMG-CoA reductase, lowers cholesterol saturation index of gallbladder bile. Hepatology 8:1147–1150CrossRefGoogle Scholar
  30. 30.
    Kim WR, Flamm SL, Bisceglie AMD, Bodenheimer HC Jr (2008) Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology 47:1363–1370CrossRefGoogle Scholar
  31. 31.
    Kaplan MM, Righetti A (1970) Induction of rat liver alkaline phosphatase: the mechanism of the serum elevation in bile duct obstruction. J Clin Invest 49:508–516CrossRefGoogle Scholar
  32. 32.
    Saraswathi V, Gao L, Morrow JD, Chait A, Niswender KD, Hasty AH (2007) Fish oil increases cholesterol storage in white adipose tissue with concomitant decreases in inflammation, hepatic steatosis, and atherosclerosis in mice. J Nutr 137:1776–1782CrossRefGoogle Scholar
  33. 33.
    Kwon E-Y, Cho Y-Y, Do G-M, Kim H-J, Jeon S-M, Park Y-B, Lee M-K, Min TS, Choi M-S (2009) Actions of ferulic acid and vitamin E on prevention of hypercholesterolemia and atherogenic legion formation in apolipoprotein E-deficient mice. J Med Food 12:996–1003CrossRefGoogle Scholar
  34. 34.
    Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep (Amst) 4:86–93CrossRefGoogle Scholar
  35. 35.
    Bumrungpert A, Lilitchan S, Tuntipopipat S, Tirawanchai N, Komindr S (2018) Ferulic acid supplementation improves lipid profiles, oxidative stress, and inflammatory status in hyperlipidemic subjects: a randomized, double-blind, placebo-controlled clinical trial. Nutrients 10:713–720CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.JeJu Biodiversity Research InstituteJeju TechnoparkNamwonSouth Korea
  2. 2.Department of Oriental Medicine Biotechnology, College of Life SciencesKyung Hee UniversityYonginSouth Korea
  3. 3.DanjoungBioCo., LtdWonjuSouth Korea

Personalised recommendations