Journal of Natural Medicines

, Volume 73, Issue 1, pp 226–235 | Cite as

Selective inhibition of P-gp transporter by goniothalamin derivatives sensitizes resistant cancer cells to chemotherapy

  • Julia Sachs
  • Onat Kadioglu
  • Anja Weber
  • Vanessa Mundorf
  • Janina Betz
  • Thomas Efferth
  • Jörg Pietruszka
  • Nicole TeuschEmail author


Overexpression of efflux transporters of the ATP-binding cassette (ABC) transporter family, primarily P-glycoprotein (P-gp), is a frequent cause of multidrug resistance in cancer and leads to failure of current chemotherapies. Thus, identification of selective P-gp inhibitors might provide a basis for the development of novel anticancer drug candidates. The natural product goniothalamin and 21 derivatives were characterized regarding their ability to inhibit ABC transporter function. Among the goniothalamins, selective inhibitors of P-gp were discovered. The two most potent inhibitors (R)-3 and (S)-3 displayed the ability to increase intracellular accumulation of doxorubicin, thereby sensitizing P-gp-overexpressing tumor cells to chemotherapy by decreasing doxorubicin IC50 value up to 15-fold. Molecular docking studies indicated these compounds to inhibit P-gp by acting as transporter substrates. In conclusion, our findings revealed a novel role of goniothalamin derivatives in reversing P-gp-mediated chemotherapy resistance.


Goniothalamin Multidrug resistance P-glycoprotein Cancer chemotherapy Resistance reversal 



ATP-binding cassette


Breast cancer resistance protein




Multidrug resistance


Multidrug resistance-associated protein 1




Structure–activity relationship



We would like to thank Dr. Erasmus Schneider (Wadsworth Center, New York State Department of Health, Albany, NY, USA) for kindly providing the MCF-7/MX cells.


This work was funded by the German Federal Ministry for Economic Affairs and Energy (‘ZIM Kooperationsprojekt’ KF3279X01AJ3) and A.W. was supported by a scholarship of the Studienstiftung des deutschen Volkes. The PhD training of J.S. was financed by the graduate program in Pharmacology and Experimental Therapeutics at the University of Cologne, which is financially and scientifically supported by Bayer.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary material

11418_2018_1230_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 37 kb)


  1. 1.
    Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58. CrossRefGoogle Scholar
  2. 2.
    Khamisipour G, Jadidi-Niaragh F, Jahromi AS et al (2016) Mechanisms of tumor cell resistance to the current targeted-therapy agents. Tumor Biol 37:10021–10039. CrossRefGoogle Scholar
  3. 3.
    Gillet J-P, Gottesman MM (2010) Mechanisms of multidrug resistance in cancer. In: Zhou J (ed) Multi-drug resistance in cancer. Humana Press, Totowa, pp 47–76CrossRefGoogle Scholar
  4. 4.
    Bräutigam M, Teusch N, Schenk T et al (2015) Selective inhibitors of glutathione transferase P1 with trioxane structure as anticancer agents. Chem Med Chem 10:629–639. CrossRefGoogle Scholar
  5. 5.
    El-Awady R, Saleh E, Hashim A et al (2016) The role of eukaryotic and prokaryotic ABC transporter family in failure of chemotherapy. Front Pharmacol 7:535. Google Scholar
  6. 6.
    Cordon-Cardo C, O’Brien JP, Boccia J et al (1990) Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem 38:1277–1287. CrossRefGoogle Scholar
  7. 7.
    Sharom FJ (2008) ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9:105–127. CrossRefGoogle Scholar
  8. 8.
    Lu JF, Pokharel D, Bebawy M (2015) MRP1 and its role in anticancer drug resistance. Drug Metab Rev 47:406–419. CrossRefGoogle Scholar
  9. 9.
    Westover D, Li F (2015) New trends for overcoming ABCG2/BCRP-mediated resistance to cancer therapies. J Exp Clin Cancer Res 34:159. CrossRefGoogle Scholar
  10. 10.
    Hlubucek JR, Robertson AV (1967) (+)-(5S)-δ-Lactone of 5-hydroxy-7-phenylhepta-2,6-dienoic acid, a natural product from Cryptocarya caloneura (Scheff.) Kostermans. Aust J Chem 20:2199. CrossRefGoogle Scholar
  11. 11.
    Jewers K, Davis JB, Dougan J et al (1972) Goniothalamin and its distribution in four Goniothalamus species. Phytochemistry 11:2025–2030. CrossRefGoogle Scholar
  12. 12.
    Seyed MA, Jantan I, Bukhari SNA (2014) Emerging anticancer potentials of goniothalamin and its molecular mechanisms. Biomed Res Int 2014:536508. CrossRefGoogle Scholar
  13. 13.
    Vendramini-Costa DB, Spindola HM, de Mello GC et al (2015) Anti-inflammatory and antinociceptive effects of racemic goniothalamin, a styryl lactone. Life Sci 139:83–90. CrossRefGoogle Scholar
  14. 14.
    Kido LA, Montico F, Sauce R et al (2016) Anti-inflammatory therapies in TRAMP mice: delay in PCa progression. Endocr Relat Cancer 23:235–250. CrossRefGoogle Scholar
  15. 15.
    Vendramini-Costa DB, Francescone R, Posocco D et al (2017) Anti-inflammatory natural product goniothalamin reduces colitis-associated and sporadic colorectal tumorigenesis. Carcinogenesis 38:51–63. CrossRefGoogle Scholar
  16. 16.
    Innajak S, Mahabusrakum W, Watanapokasin R (2016) Goniothalamin induces apoptosis associated with autophagy activation through MAPK signaling in SK-BR-3 cells. Oncol Rep 35:2851–2858. CrossRefGoogle Scholar
  17. 17.
    Semprebon SC, Marques LA, D’Epiro GFR et al (2015) Antiproliferative activity of goniothalamin enantiomers involves DNA damage, cell cycle arrest and apoptosis induction in MCF-7 and HB4a cells. Toxicol In Vitro 30:250–263. CrossRefGoogle Scholar
  18. 18.
    Weber A, Döhl K, Sachs J et al (2017) Synthesis and cytotoxic activities of goniothalamins and derivatives. Bioorg Med Chem 25:6115–6125. CrossRefGoogle Scholar
  19. 19.
    Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. CrossRefGoogle Scholar
  20. 20.
    Tajima Y, Nakagawa H, Tamura A, Nitensidine A et al (2014) A guanidine alkaloid from Pterogyne nitens, is a novel substrate for human ABC transporter ABCB1. Phytomedicine 21:323–332. CrossRefGoogle Scholar
  21. 21.
    Aller SG, Yu J, Ward A et al (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–1722. CrossRefGoogle Scholar
  22. 22.
    Ferreira RJ, Ferreira M-JU, dos Santos DJVA (2013) Molecular docking characterizes substrate-binding sites and efflux modulation mechanisms within P-glycoprotein. J Chem Inf Model 53:1747–1760. CrossRefGoogle Scholar
  23. 23.
    Efferth T, Volm M (2017) Multiple resistance to carcinogens and xenobiotics: P-glycoproteins as universal detoxifiers. Arch Toxicol 91:2515–2538. CrossRefGoogle Scholar
  24. 24.
    Yu J, Zhou P, Asenso J et al (2016) Advances in plant-based inhibitors of P-glycoprotein. J Enzyme Inhib Med Chem 31:867–881. CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Julia Sachs
    • 1
  • Onat Kadioglu
    • 2
  • Anja Weber
    • 3
  • Vanessa Mundorf
    • 1
  • Janina Betz
    • 1
  • Thomas Efferth
    • 2
  • Jörg Pietruszka
    • 3
    • 4
  • Nicole Teusch
    • 1
    Email author
  1. 1.Bio-Pharmaceutical Chemistry and Molecular Pharmacology, Faculty of Applied Natural SciencesTechnische Hochschule Köln, CHEMPARKLeverkusenGermany
  2. 2.Department of Pharmaceutical Biology, Institute of Pharmacy and BiochemistryJohannes Gutenberg Universität MainzMainzGermany
  3. 3.Institute of Bioorganic ChemistryHeinrich-Heine-Universität Düsseldorf Im Forschungszentrum JülichJülichGermany
  4. 4.IBG-1: Biotechnology, Forschungszentrum JülichJülichGermany

Personalised recommendations