Advertisement

Journal of Natural Medicines

, Volume 72, Issue 2, pp 557–562 | Cite as

The active glycosides from Urtica fissa rhizome decoction

  • Mengyue Wang
  • Ying Zhang
  • Hao Zhang
  • Xiaoru Feng
  • Xiaobo LiEmail author
Note

Abstract

Using bioassay guided fractionation, 16 glycosides, including two new compounds (1 and 2), were isolated from the anticomplement and anti-inflammatory portion of an Urtica fissa rhizome decoction used for arthritis. Several compounds were found to possess significant anticomplement and anti-inflammatory activities. This study revealed that glycosides played an important role in the therapeutic effects of Urtica fissa rhizome.

Keywords

Urtica fissa Decoction Glycoside Anticomplement Anti-inflammatory 

Notes

Acknowledgements

This study was financially supported by a grant of the National Natural Science Fund of China (No. 81374067). The authors would like to thank Dr. Bona Dai of the Instrumental Analysis Center of Shanghai Jiao Tong University for NMR measurement.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no any conflict of interest to disclose.

Supplementary material

11418_2018_1172_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1626 kb)

References

  1. 1.
    Chen JR, Lin Q, Friis I, Wilmot-Dear CM, Monro AK (2003) Flora of China (vol 5). Science Press, Beijing, pp 78–84Google Scholar
  2. 2.
    Feng XR, Wang MY, Cheng J, Li XB (2017) Two new secolignans with in vitro anti-inflammatory activities from Urtica fissa rhizomes. J Nat Med 71:553–555CrossRefGoogle Scholar
  3. 3.
    Ji BQ, Feng BM, Shi LY, Tang L, Wang YQ (2009) Chemical constituents of the roots of Urtica fissa E. Pritz. Chin Pharm J 44:1372–1374Google Scholar
  4. 4.
    Feng BM, Qin HH, Wang HG, Shi LY, Yu DY, Ji BQ, Zhao Q, Wang YQ (2012) Three new secolignan glycosides from Urtica fissa E. Pritz. J Nat Med 66:562–565CrossRefGoogle Scholar
  5. 5.
    Ji BQ, Yan XG, Duan LX, Tang L, Shi LY, Wang YQ, Feng BM (2009) Two new secolignans from the roots of Urtica fissa E. Pritz. Helv Chim Acta 92:997–1001CrossRefGoogle Scholar
  6. 6.
    Chinese Materia Medica Editorial Board (1999) Chinese Materia Medica (2). Shanghai Science and Technology Press, Shanghai, pp 584–585Google Scholar
  7. 7.
    Gao Y, Qi CL, Zhang L, Yue XM, Wang H (2015) Studies on the chemical constituents of fresh Polygonatum sibiricum. Pharm Clin Res 23:365–367Google Scholar
  8. 8.
    Shimoda K, Naoji K, Kubota N, Manabu H, Hamada M, Ken S, Hamada H (2013) Regioselective hydroxylation and glucosylation of alpha- and beta-pinenes with cultured cells of Eucalyptus perriniana. Nat Prod Commun 8:847–849PubMedPubMedCentralGoogle Scholar
  9. 9.
    Xue PF, Liang H, Wang B, Zhao YY (2005) Chemical constituents from Potentilla multifida L. J Chin Pharm Sci 14:86–88Google Scholar
  10. 10.
    Liu LH, Pu JX, Zhao JF, Mei SX, Yang XD, Wang YB, Zhang HB, Li L (2004) A new lignan from Boschniakia himalaica. Chin Chem Lett 15:43–45Google Scholar
  11. 11.
    Liu DL, Xu SX, Wang WF (1998) A novel lignan glucoside from Forsythia suspensa Vahl. J Chin Pharm Sci 7:49–50Google Scholar
  12. 12.
    Kruthiventi AK, Krishnaswamy NR (2000) Constituents of the flowers of Persea gratissima. Fitoterapia 71:94–96CrossRefGoogle Scholar
  13. 13.
    Duan YH, Dai Y, Gao H, Ye WC, Yao XS (2010) The chemical study on Sarcandra glabra (Thunb.) Naka. Chin Tradit Herb Drugs 41:29–32Google Scholar
  14. 14.
    Peng JN, Lu YR, Chen DC (1995) Studies on the chemical constituents of Indian mockstrawberry (Duchesnea indica). Chin Tradit Herb Drugs 26:339–341Google Scholar
  15. 15.
    Lin LZ, Qiu SX, Lindenmaier M, He XG, Featherstone T, Cordell GA (2002) Patuletin-3-O-rutinoside from the aerial parts of Echinacea angustifolia. Pharm Biol 40:92–95CrossRefGoogle Scholar
  16. 16.
    Zhou Y, Feng BM, Shi LY, Wang HG, Tang L, Wang YQ (2011) Two new 3-oxo-α-ionol glucosides from Urtica laetevirens Maxim. Nat Prod Res 25:1219–1223CrossRefGoogle Scholar
  17. 17.
    Su J, Wu ZJ, Shen YC, Zhang C, Zhang WD (2008) Lignans from Daphne giraldii. Chem Nat Comp 44:648–650CrossRefGoogle Scholar
  18. 18.
    Heinonen S, Nurmi T, Liukkonen K, Poutanen K, Wähälä K, Deyama T, Nishibe S, Adlercreutz H (2001) In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. J Agric Food Chem 49:3178–3186CrossRefGoogle Scholar
  19. 19.
    Otsuka H, Yao M, Kamada K, Takeda Y (1995) Alangionosides G-M: glycosides of megastigmane derivatives from the leaves of Alangium premnifolium. Chem Pharm Bull 43:754–759CrossRefGoogle Scholar
  20. 20.
    Abrosca BD, DellaGreca M, Fiorentino A, Monaco P, Oriano P, Temussi F (2004) Structure elucidation and phytotoxicity of C13 nor-isoprenoids from Cestrum parqui. Phytochemistry 65:497–505CrossRefGoogle Scholar
  21. 21.
    Badjah-Hadj-Ahmed AY, Meklati BY, Waton H, Pham QT (1992) Structural studies in the bicyclo [3.1.1] heptane series by 1H and 13C NMR. Magn Reson Chem 30:807–816CrossRefGoogle Scholar
  22. 22.
    Lee JG, Baek SH, Lee YY, Park SY, Park JH (2011) anticomplementary ginsenosides isolated from processed ginseng. Biol Pharm Bull 34:898–900CrossRefGoogle Scholar
  23. 23.
    Klerx JP, Beukelman CJ, Van DH, Willers JM (1983) Microassay for colorimetric estimation of complement activity in guinea pig, human and mouse serum. J Immunol Methods 63:215–220CrossRefGoogle Scholar
  24. 24.
    Damodar K, Kim JK, Jun JG (2016) Synthesis and pharmacological properties of naturally occurring prenylated and pyranochalcones as potent anti-inflammatory agents. Chin Chem Lett 27:698–702CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Mengyue Wang
    • 1
  • Ying Zhang
    • 1
  • Hao Zhang
    • 1
  • Xiaoru Feng
    • 1
  • Xiaobo Li
    • 1
    Email author
  1. 1.School of PharmacyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations