Inhibition of melanin production by anthracenone dimer glycosides isolated from Cassia auriculata seeds

  • Weicheng Wang
  • Yi Zhang
  • Souichi Nakashima
  • Seikou Nakamura
  • Tao Wang
  • Masayuki Yoshikawa
  • Hisashi MatsudaEmail author
Original Paper


The methanol extract of Cassia auriculata seeds was found to inhibit melanogenesis in B16 melanoma 4A5 cells under conditions of theophylline stimulation. Two new phlegmacin-type anthracenone dimer glycosides, auriculataosides A and B, were isolated from the active methanol fraction, and their inhibitory effects were observed in the concentration range of 0.03 to 0.3 μM. Inhibition of microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 protein expression was observed, suggesting that the inhibition of these factors is part of the mechanism of action underlying melanogenesis inhibition.


Cassia auriculate Anthracenone dimer glycoside Melanogenesis inhibitor Mechanism of action 



This work was partly supported by JSPS KAKENHI Grant Number 16K08312 (H.M.).

Compliance with ethical standards

Conflict of interest

M. Yoshikawa and H. Matsuda have been received research Grants from N.T.H Co., Ltd. All other authors declare that they have no conflicts of interest.

Supplementary material

11418_2018_1276_MOESM1_ESM.docx (532 kb)
Supplementary material 1 (DOCX 533 kb)


  1. 1.
    Goding CR (2007) Melanocytes: the new black. Int J Biochem Cell Biol 39:275–279CrossRefPubMedGoogle Scholar
  2. 2.
    Sulaimon SS, Kitchell BE (2003) The biology of melanocytes. Vet Dermat 14:57–65CrossRefGoogle Scholar
  3. 3.
    Sato N (1987) Endocrine environment in adult females with chloasma. Nihon Hifuka Gakkai Zasshi 97:937–943PubMedGoogle Scholar
  4. 4.
    Wu S, Shi H, Wu H, Yan S, Guo J, Sun Y, Pan L (2012) Treatment of melasma with oral administration of tranexamic acid. Aesthetic Plast Surg 36:964–970CrossRefPubMedGoogle Scholar
  5. 5.
    Sealy RC, Felix CC, Hyde JS, Swartz HM (1980) Structure and reactivity of melanins: influence of free radicals and metal ions. Free Radic Biol 4:209–259CrossRefGoogle Scholar
  6. 6.
    Debing I, Ijzerman AP, Vauquelin G (1988) Melanosome binding and oxidation–reduction properties of synthetic l-DOPA–melanin as in vitro tests for drug toxicity. Mol Pharmacol 33:470–476PubMedGoogle Scholar
  7. 7.
    Testorf M, Kronstrand R, Svensson SPS, Lundström I, Ahlner J (2001) Characterization of [3H]flunitrazepam binding to melanin. Anal Biochem 298:259–264CrossRefPubMedGoogle Scholar
  8. 8.
    Matsuda H, Nakashima S, Oda Y, Nakamura S, Yoshikawa M (2009) Melanogenesis inhibitors from the rhizomes of Alpinia officinarum in B16 melanoma cells. Bioorg Med Chem 17:6048–6053CrossRefPubMedGoogle Scholar
  9. 9.
    Nakashima S, Matsuda H, Oda Y, Nakamura S, Xu F, Yoshikawa M (2010) Melanogenesis inhibitors from the desert plant Anastatica hierochuntica in B16 melanoma cells. Bioorg Med Chem 18:2337–2345CrossRefPubMedGoogle Scholar
  10. 10.
    Nakamura S, Chen G, Nakashima S, Matsuda H, Pei Y, Yoshikawa M (2010) Brazilian natural medicines. IV. New noroleanane-type triterpene and ecdysterone-type sterol glycosides and melanogenesis inhibitors from the roots of Pfaffia glomerata. Chem Pharm Bull 58:690–695CrossRefPubMedGoogle Scholar
  11. 11.
    Nakamura S, Fujimoto K, Nakashima S, Matsumoto T, Miura T, Uno K, Matsuda H, Yoshikawa M (2012) Medicinal flowers. XXXVI. Acylated oleanane-type triterpene saponins with inhibitory effects on melanogenesis from the flower buds of Chinese Camellia japonica. Chem Pharm Bull 60:752–758CrossRefPubMedGoogle Scholar
  12. 12.
    Nakamura S, Moriura T, Park S, Fujimoto K, Matsumoto T, Ohta T, Matsuda H, Yoshikawa M (2012) Melanogenesis inhibitory and fibroblast proliferation accelerating effects of noroleanane- and oleanane-type triterpene oligoglycosides from the flower buds of Camellia japonica. J Nat Prod 75:1425–1430CrossRefPubMedGoogle Scholar
  13. 13.
    Fujimoto K, Nakamura S, Nakashima S, Matsumoto T, Uno K, Ohta T, Miura T, Matsuda H, Yoshikawa M (2012) Medicinal flowers. XXXV. Nor-oleanane-type and acylated oleanane-type triterpene saponins from the flower buds of Chinese Camellia japonica and their inhibitory effects on melanogenesis. Chem Pharm Bull 60:1188–1194CrossRefPubMedGoogle Scholar
  14. 14.
    Nakamura S, Nakashima S, Tanabe G, Oda Y, Yokota N, Fujimoto K, Matsumoto T, Sakuma R, Ohta T, Ogawa K, Nishida S, Miki H, Matsuda H, Muraoka O, Yoshikawa M (2013) Alkaloid constituents from flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) with melanogenesis inhibitory activity in B16 melanoma cells. Bioorg Med Chem 21:779–787CrossRefPubMedGoogle Scholar
  15. 15.
    Nakamura S, Nakashima S, Oda Y, Yokota N, Fujimoto K, Matsumoto T, Ohta T, Ogawa K, Maeda S, Nishida S, Matsuda H, Yoshikawa M (2013) Alkaloids from Sri Lankan curry-leaf (Murraya koenigii) display melanogenesis inhibitory activity: structures of karapinchamines A and B. Bioorg Med Chem 21:1043–1049CrossRefPubMedGoogle Scholar
  16. 16.
    Nakamura S, Fujimoto K, Matsumoto T, Nakashima S, Ohta T, Ogawa K, Matsuda H, Yoshikawa M (2013) Acylated sucroses and acylated quinic acids analogs from the flower buds of Prunus mume and their inhibitory effect on melanogenesis. Phytochemistry 92:128–136CrossRefPubMedGoogle Scholar
  17. 17.
    Matsumoto T, Nakamura S, Nakashima S, Yoshikawa M, Fujimoto K, Ohta T, Morita A, Yasui R, Kashiwazaki E, Matsuda H (2013) Diarylheptanoids with inhibitory effects on melanogenesis from the rhizomes of Curcuma comosa in B16 melanoma cells. Bioorg Med Chem Lett 23:5178–5181CrossRefPubMedGoogle Scholar
  18. 18.
    Matsumoto T, Nakamura S, Nakashima S, Fujimoto K, Yoshikawa M, Ohta T, Ogawa K, Matsuda H (2014) Lignan dicarboxylates and terpenoids from the flower buds of Cananga odorata and their inhibitory effects on melanogenesis. J Nat Prod 77:990–999CrossRefPubMedGoogle Scholar
  19. 19.
    Morikawa T, Nakanishi Y, Ninomiya K, Matsuda H, Nakashima S, Miki H, Miyashita Y, Yoshikawa M, Hayakawa T, Muraoka O (2014) Dimeric pyrrolidinoindoline-type alkaloids with melanogenesis inhibitory activity in flower buds of Chimonanthus praecox. J Nat Med 68:539–549CrossRefPubMedGoogle Scholar
  20. 20.
    Nakashima S, Oda Y, Nakamura S, Liu J, Onishi K, Kawabata M, Miki H, Himuro Y, Yoshikawa M, Matsuda H (2015) Inhibitors of melanogenesis in B16 melanoma 4A5 cells from flower buds of Lawsonia inermis (Henna). Bioorg Med Chem Lett 25:2702–2706CrossRefPubMedGoogle Scholar
  21. 21.
    Nakamura S, Xu F, Ninomiya K, Nakashima S, Oda Y, Morikawa T, Muraoka O, Yoshikawa M, Matsuda H (2014) Chemical structures and hepatoprotective effects of constituents from Cassia auriculata leaves. Chem Pharm Bull 62:1026–1031CrossRefPubMedGoogle Scholar
  22. 22.
    Nakamura S, Zhang Y, Nakashima S, Oda Y, Wang T, Yoshikawa M, Matsuda H (2016) Structures of aromatic glycosides from the seeds of Cassia auriculata. Chem Pharm Bull 64:970–974CrossRefPubMedGoogle Scholar
  23. 23.
    Zhu JJ, Zhang CF, Zhang M, Bligh SW, Yang L, Wang ZM, Wang ZT (2010) Separation and identification of three epimeric pairs of new C-glucosyl anthrones from Rumex dentatus by on-line high performance liquid chromatography-circular dichroism analysis. J Chromatogra A 1217:5384–5388CrossRefGoogle Scholar
  24. 24.
    Elsworth C, Gill M, Giménez A, Milanovic NM, Raudies E (1999) Pigments of fungi. Part 50. Structure, biosynthesis and stereochemistry of new dimeric dihydroanthracenones of the phlegmacin type from Cortinarius sinapicolor Cleland. J Chem Soc Perkin Trans 1:119–126CrossRefGoogle Scholar
  25. 25.
    Prelog V, Helmchen G (1982) Basic principles of the CIP-system and and proposals for a revision. Angew Chem Int Ed Engl 21:567–583CrossRefGoogle Scholar
  26. 26.
    Friedmann PS, Gilchrest BA (1987) Ultraviolet radiation directly induces pigment production by cultured human melanocytes. J Cell Physiol 133:88–94CrossRefPubMedGoogle Scholar
  27. 27.
    Hunt G, Todd C, Cresswell JE, Thody AJ (1994) α-Melanocyte stimulating hormone and its analogue Nle4DPhe7 α-MSH affect morphology, tyrosinase activity and melanogenesis in cultured human melanocytes. J Cell Sci 107:205–211PubMedGoogle Scholar
  28. 28.
    Buscá R, Ballotti R (2000) Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res 13:60–69CrossRefPubMedGoogle Scholar
  29. 29.
    Steinberg ML, Whittaker JR (1976) Stimulation of melatonic expression in a melanoma cell line by theophylline. J Cell Physiol 87:265–275CrossRefPubMedGoogle Scholar
  30. 30.
    Lerch K (1978) Amino acid sequence of tyrosinase from Neurospora crassa. Proc Natl Acad Sci USA75:3635–3639CrossRefPubMedGoogle Scholar
  31. 31.
    Kwon BS, Haq AK, Wakulchik M, Kestler D, Barton DE, Francke U, Lamoreux ML, Whitney JB 3rd, Halaban R (1989) Isolation, chromosomal mapping, and expression of the mouse tyrosinase gene. J Invest Dermatol 93:589–594CrossRefPubMedGoogle Scholar
  32. 32.
    Klabunde T, Eicken C, Sacchettini JC, Krebs B (1998) Crystal structure of a plant catechol oxidase containing a dicopper center. Nat Struct Biol 5:1084–1090CrossRefPubMedGoogle Scholar
  33. 33.
    Takara K, Iwasaki H, Ujihara K, Wada K (2008) Human tyrosinase inhibitor in rum distillate wastewater. J Oleo Sci 57:191–196CrossRefPubMedGoogle Scholar
  34. 34.
    Puiu M, Babaligea I, Olmazu C, Răucan A, Oancea D (2010) Peroxidase-mediated oxidation of l-dopa: a kinetic approach. Biochem Eng J 52:248–254CrossRefGoogle Scholar
  35. 35.
    Austria R, Semenzato A, Bettero A (1997) Stability of vitamin C derivatives in solution and topical formulations. J Pharm Biomed Anal 15:795–801CrossRefPubMedGoogle Scholar
  36. 36.
    Mason HS, Peterson EW (1965) Melanoproteins. I. Reactions between enzyme-generated quinones and amino acids. Biochim Biophys Acta 111:134–146CrossRefPubMedGoogle Scholar
  37. 37.
    Matsuda H, Higashino M, Nakai Y, Iinuma M, Kubo M, Lang FA (1996) Studies of cuticle drugs from natural sources. IV. Inhibitory effects of some Arctostaphylos plants on melanin biosynthesis. Biol Pharm Bull 19:153–156CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy 2019

Authors and Affiliations

  1. 1.Kyoto Pharmaceutical UniversityKyotoJapan
  2. 2.Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
  3. 3.N.T.H Co., Ltd.TokyoJapan

Personalised recommendations