Advertisement

Journal of Natural Medicines

, Volume 72, Issue 2, pp 542–550 | Cite as

Two new aromatic glycosides, elengiosides A and B, from the flowers of Mimusops elengi

  • Toshio MorikawaEmail author
  • Yoshiaki Manse
  • Mika Koda
  • Saowanee Chaipech
  • Yutana Pongpiriyadacha
  • Osamu Muraoka
  • Kiyofumi Ninomiya
Note

Abstract

Two new aromatic glycosides, elengiosides A (1) and B (2), were isolated from the methanolic extract of the flowers of Mimusops elengi (Sapotaceae) together with 26 known compounds. Their stereostructures were elucidated based on their spectroscopic properties and chemical evidence. Among the isolates, a phenylethanoid glycoside, undatuside C (14), was found to exhibit hyaluronidase inhibitory activity.

Keywords

Mimusops elengi Elengioside Hyaluronidase inhibitor Sapotaceae 

Notes

Acknowledgements

This work was supported by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2014–2018, Japan (S1411037, TM) as well as the JSPS KAKENHI, Japan [Grant Numbers 15K08008 (TM), 15K08009 (KN), and 16K08313 (OM)]. Financial support by the Kobayashi International Scholarship Foundation, Japan, is also acknowledged (TM).

References

  1. 1.
    Baliga MS, Pai RJ, Bhat HP, Palatty PL, Boloor R (2011) Chemistry and medicinal properties of Bakul (Mimusops elengi Linn): a review. Food Res Int 44:1823–1829CrossRefGoogle Scholar
  2. 2.
    Kadam PV, Yadav KN, Deoda RS, Shivatare RS, Patil MJ (2012) Mimsops elengi: a review on ethnobotany, phytochemical and pharmacological profile. J Pharm Phytochem 1:64–74Google Scholar
  3. 3.
    Lim TK (2013) Mimusops elengi. Edible medicinal and non-medicinal plants, vol 6. Springer, Netherlands, pp 119–128CrossRefGoogle Scholar
  4. 4.
    Shailajan S, Gurjar D (2015) Evaluation of Mimsops elengi L. flowers using pharmacognostic approach. Pharm Commun 5:83–92Google Scholar
  5. 5.
    Roqaiya M, Begum W, Jahan D (2015) A review on pharmacological property of Mimsops elengi Linn. Int J Herb Med 2:24–30Google Scholar
  6. 6.
    Sen S, Sahu NP, Mahato SB (1995) Pentacyclic triterpenoids from Mimsops elengi. Phytochemistry 38:205–207CrossRefGoogle Scholar
  7. 7.
    Jahan N, Ahmed W, Malik A (1995) A lupene-type triterpene from Mimsops elengi. Phytochemistry 39:255–257CrossRefGoogle Scholar
  8. 8.
    Sahu NP, Koike K, Jia Z, Mondal NB, Achari B, Nikaido T (1999) Structure determination and detailed 1H, 13C NMR assignments of triterpenes from Mimsops elengi. Magn Reson Chem 37:152–156CrossRefGoogle Scholar
  9. 9.
    Sahu NP, Koike K, Jia Z, Nikaido T (1995) Novel triterpenoid saponins from Mimsops elengi. Tetrahedron 51:13435–13446CrossRefGoogle Scholar
  10. 10.
    Sahu NP (1996) Triterpenoid saponins of Mimsops elengi. Phytochemistry 41:883–886CrossRefGoogle Scholar
  11. 11.
    Lavaud C, Massiot G, Becchi M, Misra G, Nigam SK (1996) Saponins from three species of Mimsops. Phytochemistry 41:887–893CrossRefGoogle Scholar
  12. 12.
    Sahu NP, Koike K, Jia Z, Nikaido T (1997) Triterpenoid saponins from Mimsops elengi. Phytochemistry 44:1145–1149CrossRefGoogle Scholar
  13. 13.
    Jahan N, Ahmed W, Malik A (1995) New steroidal glycosides from Mimsops elengi. J Nat Prod 58:1244–1247CrossRefGoogle Scholar
  14. 14.
    Akhtar N, Ali M, Alam MS (2010) New steroidal glycosides from the stem bark of Mimsops elengi. Chem Nat Compd 46:549–553CrossRefGoogle Scholar
  15. 15.
    Akhtar N, Ali M, Alam MS (2010) Gallic acid esters from the stem bark of Mimsops elengi L. Nat Prod Res 24:962–972CrossRefGoogle Scholar
  16. 16.
    Purnima A, Koti BC, Thippeswamy AHM, Jaji MS, Swamy AHMV, Kurhe YV, Sadiq AJ (2010) Antiinflammatory, analgesic and antipyretic activities of Mimsops elengi Linn. Indian J Pharm Sci 72:480–485CrossRefGoogle Scholar
  17. 17.
    Nagakannan P, Shivasharan BD, Thippeswamy BS, Veerapur VP, Bansal P (2012) Protective effect of hydroalcoholic extract of Mimusops elengi Linn. flowers against middle cerebral artery occlusion induced brain injury in rats. J Ethnopharmacol 140:247–254CrossRefGoogle Scholar
  18. 18.
    Morikawa T, Xie Y, Asao Y, Okamoto M, Yamashita C, Muraoka O, Matsuda H, Pongpiriyadacha Y, Yuan D, Yoshikawa M (2009) Oleanane-type triterpene oligoglycosides with pancreatic lipase inhibitory activity from the pericarps of Sapindus rarak. Phytochemistry 70:1166–1172CrossRefGoogle Scholar
  19. 19.
    Asao Y, Morikawa T, Xie Y, Okamoto M, Hamao M, Matsuda H, Muraoka O, Yuan D, Yoshikawa M (2009) Structures of acetylated oleanane-type triterpene saponins, rarasaponins IV, V, and VI, and anti-hyperlipidemic constituents from the pericarps of Sapindus rarak. Chem Pharm Bull 57:198–203CrossRefGoogle Scholar
  20. 20.
    Morikawa T, Xie Y, Ninomiya K, Okamoto M, Muraoka O, Yuan D, Yoshikawa M, Hayakawa T (2009) Inhibitory effects of acylated acyclic sesquiterpene oligoglycosides from the pericarps of Sapindus rarak on tumor necrosis factor-α-induced cytotoxicity. Chem Pharm Bull 57:1276–1280Google Scholar
  21. 21.
    Muraoka O, MorikawaT Miyake S, Akaki J, Ninomiya K, Yoshikawa M (2010) Quantitative determination of potent α-glucosidase inhibitors, salacinol and kotalanol, in Salacia species using liquid chromatography-mass spectrometry. J Pharm Biomed Anal 52:770–773CrossRefGoogle Scholar
  22. 22.
    Muraoka O, MorikawaT Miyake S, Akaki J, Ninomiya K, Pongpiriyadacha Y, Yoshikawa M (2010) Quantitative analysis of neosalacinol and neokotalanol, another two potent α-glucosidase inhibitors from Salacia species, by LC-MS with ion pair chromatography. J Nat Med 65:142–148CrossRefGoogle Scholar
  23. 23.
    Chaipech S, Morikawa T, Ninomiya K, Yoshikawa M, Pongpiriyadacha Y, Hayakawa T, Muraoka O (2012) Structures of two new phenolic glycosides, kaempferiaosides A and B, and hepatoprotective constituents from the rhizomes of Kaempferia parviflora. Chem Pharm Bull 60:62–69CrossRefGoogle Scholar
  24. 24.
    Morikawa T, Chaipech S, Matsuda H, Hamao M, Umeda Y, Sato H, Tamura H, Kon’i H, Ninomiya K, Yoshikawa M, Pongpiriyadacha Y, Hayakawa T, Muraoka O (2012) Antidiabetogenic oligostilbenoids and 3-ethyl-4-phenyl-3,4-dihydroisocoumarins from the bark of Shorea roxburghii. Bioorg Med Chem 20:832–840CrossRefGoogle Scholar
  25. 25.
    Chaipech S, Morikawa T, Ninomiya K, Yoshikawa M, Pongpiriyadacha Y, Hayakawa T, Muraoka O (2012) New flav-3-en-3-ol glycosides, kaempferiaosides C and D, and acetophenone glycosides, kaempferiaosides E and F, from the rhizomes of Kaempferia parviflora. J Nat Med 66:486–492CrossRefGoogle Scholar
  26. 26.
    Morikawa T, Chaipech S, Matsuda H, Hamao M, Umeda Y, Sato H, Tamura H, Ninomiya K, Yoshikawa M, Pongpiriyadacha Y, Hayakawa T, Muraoka O (2012) Anti-hyperlipidemic constituents from the bark of Shorea roxburghii. J Nat Med 66:516–524CrossRefGoogle Scholar
  27. 27.
    Morikawa T, Sueyoshi M, Chaipech S, Matsuda H, Nomura Y, Yabe M, Matsumoto T, Ninomiya K, Yoshikawa M, Pongpiriyadacha Y, Hayakawa T, Muraoka O (2012) Suppressive effects of coumarins from Mammea siamensis on inducible nitric oxide synthase expression in RAW264.7 cells. Bioorg Med Chem 20:4968–4977CrossRefGoogle Scholar
  28. 28.
    Akaki J, MorikawaT Miyake S, Ninomiya K, Okada M, Tanabe G, Pongpiriyadacha Y, Yoshikawa M, Muraoka O (2013) Evaluation of Salacia species as anti-diabetic natural resources based on quantitative analysis of eight sulphonium constituents: a new class of α-glucosidase inhibitors. Phytochem Anal 25:544–550CrossRefGoogle Scholar
  29. 29.
    MorikawaT Akaki J, Ninomiya K, Kinouchi E, Tanabe G, Pongpiriyadacha Y, Yoshikawa M, Muraoka O (2015) Salacinol and related analogs: new leads for type 2 diabetes therapeutic candidates from the Thai traditional natural medicine Salacia chinensis. Nutrients 7:1480–1493CrossRefGoogle Scholar
  30. 30.
    Ninomiya K, Matsumoto T, Chaipech S, Miyake S, Katsuyama Y, Tsuboyama A, Pongpiriyadacha Y, Hayakawa T, Muraoka O, Morikawa T (2016) Simultaneous quantitative analysis of 12 methoxyflavones with melanogenesis inhibitory activity from the rhizomes of Kaempferia parviflora. J Nat Med 70:179–189CrossRefGoogle Scholar
  31. 31.
    Ninomiya K, Shibatani K, Sueyoshi M, Chaipech S, Pongpiriyadacha Y, Hayakawa T, Muraoka O, Morikawa T (2016) Aromatase inhibitory activity of geranylated coumarins, mammeasins C and D, isolated from the flowers of Mammea siamensis. Chem Pharm Bull 64:880–885CrossRefGoogle Scholar
  32. 32.
    Morikawa T, Kitagawa N, Tanabe G, Ninomiya K, Okugawa S, Motai C, Kamei I, Yoshikawa M, Lee IJ, Muraoka O (2016) Quantitative determination of alkaloids in lotus flower (flower buds of Nelumbo nucifera) and their melanogenesis inhibitory activity. Molecules 21:930CrossRefGoogle Scholar
  33. 33.
    Moriyama H, Moriyama M, Ninomiya K, Morikawa T, Hayakawa T (2016) Inhibitory effects of oligostilbenoids from the bark of Shorea roxburghii on malignant melanoma cell growth: implications for novel topical anticancer candidates. Biol Pharm Bull 39:1675–1682CrossRefGoogle Scholar
  34. 34.
    Manse Y, Ninomiya K, Nishi R, Kamei I, Katsuyama Y, Imagawa T, Chaipech S, Muraoka O, Morikawa T (2016) Melanogenesis inhibitory activity of a 7-O-9′-linked neolignan from Alpinia galanga fruit. Bioorg Med Chem 24:6215–6224CrossRefGoogle Scholar
  35. 35.
    Ninomiya K, Chaipech S, Kunikata Y, Yagi R, Pongpiriyadacha Y, Muraoka O, Morikawa T (2017) Quantitative determination of stilbenoids and dihydroisocoumarins in Shorea roxburghii and evaluation of their hepatoprotective activity. Int J Mol Sci 18:451CrossRefGoogle Scholar
  36. 36.
    Tong AM, Lu WY, Xu JH, Lin GQ (2004) Use of apple seed meal as a new source of beta-glucosidase for enzymatic glucosylation of 4-substituted benzyl alcohols and tyrosol in monophasic aqueous-dioxane medium. Bioorg Med Chem 14:2095–2097CrossRefGoogle Scholar
  37. 37.
    De Rosa S, De Giulio A, Tommonaro G (1996) Aliphatic and aromatic glycosides from the cell cultures of Lycopersicon esculentum. Phytochemistry 42:1031–1034CrossRefGoogle Scholar
  38. 38.
    Parada F, Duque C, Fujimoto Y (2000) Free and bound volatile composition and characterization of some glucoconjugates as aroma precursors in Melón de Olor fruit pulp. J Agric Food Chem 48:6200–6204CrossRefGoogle Scholar
  39. 39.
    Ma S-J, Mizutani M, Hiratake J, Hayashi K, Yagi K, Watanabe N, Sakata K (2001) Substrate specificity of beta-primevarosidase, a key enzyme in aroma formation during oolong tea and black tea manufacturing. Biosci Biotechnol Biochem 65:2719–2729CrossRefGoogle Scholar
  40. 40.
    Kawahara E, Nishiuchi M, Fujii M, Kato K, Ida Y, Akita H (2005) Chemoenzymatic synthesis of naturally occurring phenethyl(1 → 6)-β-d-glucopyranosides. Heterocycles 65:1461–1470CrossRefGoogle Scholar
  41. 41.
    Hiraoka N, Carew DP (1981) Biotransformation of 2-(p-methoxyphenyl)ethylamine by Catharanthus roseus and Strobilanthes dyerianus cell cultures. J Nat Prod 44:285–288CrossRefGoogle Scholar
  42. 42.
    Wu J, Huang J, Xiao Q, Zhang S, Xiao Z, Li Q, Long L, Huang L (2004) Complete assignments of 1H and 13C NMR data for 10 phenylethanoid glycosides. Magn Reson Chem 42:659–662CrossRefGoogle Scholar
  43. 43.
    Morikawa T, Wang L-B, Nakamura S, Ninomiya K, Yokoyama E, Matsuda H, Muraoka O, Wu L-J, Yoshikawa M (2009) Medicinal flowers. XXVII. New flavanone and chalcone glycosides, arenariumosides I, II, III, and IV, and tumor necrosis factor-α inhibitors from everlasting, flowers of Helichrysum arenarium. Chem Pharm Bull 57:361–367CrossRefGoogle Scholar
  44. 44.
    Chen D, Fan J, Wang P, Zhu L, Jin Y, Peng Y, Du S (2012) Isolation, identification and antioxidative capacity of water-soluble phenylpropanoid compounds from Rhodiola crenulata. Food Chem 132:2126–2133CrossRefGoogle Scholar
  45. 45.
    Wu X, Wang Y, Huang X-J, Fan C-L, Wang G-C, Zhang X-Q, Zhang Q-W, Ye W-C (2011) Three new glycosides from Hylocereus undatus. J Asian Nat Prod Res 13:728–733CrossRefGoogle Scholar
  46. 46.
    Kishida M, Akita H (2005) Simple preparation of phenylpropenoid β-d-glucopyranoside congeners by Mizoroki-Heck type reaction using organoboron reagents. Tetrahedron 61:10559–10568CrossRefGoogle Scholar
  47. 47.
    Wan C, Yuan T, Cirello AL, Seeram NP (2012) Antioxidant and α-glucosidase inhibitory phenolics isolated from highbush blueberry flowers. Food Chem 135:1929–1937CrossRefGoogle Scholar
  48. 48.
    Tamayo-Castillo G, Vásquez V, Rios MI, Rodriguez MV, Solano G, Zacchino S, Gupta MP (2013) Isolation of major components from the roots of Godmania aesculifolia and determination of their antifungal activities. Planta Med 79:1749–1755CrossRefGoogle Scholar
  49. 49.
    Shimoda K, Kondo Y, Nishida T, Hamada H, Nakajima N, Hamada H (2006) Biotransformation of thymol, carvacrol, and eugenol by cultured cells of Eucalyptus perriniana. Phytochemistry 67:2256–2261CrossRefGoogle Scholar
  50. 50.
    Matsuda H, Morikawa T, Toguchida I, Harima S, Yoshikawa M (2002) Medicinal flowers. VI. Absolute stereostructures of two new flavanone glycosides and a phenylbutanoid glycoside from the flowers of Chrysanthemum indicum L.: their inhibitory activities for rat lens aldose reductase. Chem Pharm Bull 50:972–975CrossRefGoogle Scholar
  51. 51.
    Sigurskjold BW, Haunstrup I, Bock K (1992) Hydrolysis of substrate analogues catalyzed by β-d-glucosidase from Aspergillus nigar. Part III. Alkyl and aryl β-d-glucopyranosides. Acta Chem Scand 46:451–458CrossRefGoogle Scholar
  52. 52.
    Awano K, Yanai T, Watanabe I, Takagi Y, Kitahara T, Mori K (1995) Synthesis of all four possible stereoisomers of 1-phenyl-2,3-butanediol and both enantiomers of 3-hydroxy-4-phenyl-2-butanone to determine the absolute configuration of the natural constituents. Biosci Biotechnol Biochem 59:1251–1254CrossRefGoogle Scholar
  53. 53.
    Kakegawa H, Matsumoto H, Satoh T (1992) Inhibitory effects of some natural products on the activation of hyaluronidase and their anti-allergic actions. Chem Pharm Bull 40:1439–1442CrossRefGoogle Scholar
  54. 54.
    Girish KS, Kemparaju K (2007) The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 80:1921–1943CrossRefGoogle Scholar
  55. 55.
    Murata T, Watahiki M, Tanaka Y, Miyase T, Yoshizaki F (2010) Hyalurosidase inhibitors from Takuran, Lycopus lucidus. Chem Pharm Bull 58:394–397CrossRefGoogle Scholar
  56. 56.
    Maeda Y, Yammoto M, Matsui T, Sugiyama K, Yokota M, Nakagomi K, Tanaka H, Takahashi I, Kobayashi T, Kobayashi E (1990) Inhibitory effect of tea extracts on hyaluronidase. Shokuhin Eiseigaku Zasshi 31:233–237CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Pharmaceutical Research and Technology InstituteKindai UniversityHigashi-osakaJapan
  2. 2.Antiaging CenterKindai UniversityHigashi-osakaJapan
  3. 3.Faculty of Agro-IndustryRajamangala University of Technology SrivijayaNakhon Si ThammaratThailand
  4. 4.Faculty of Science and TechnologyRajamangala University of Technology SrivijayaNakhon Si ThammaratThailand

Personalised recommendations