Journal of Natural Medicines

, Volume 72, Issue 2, pp 399–408 | Cite as

Discrimination of Schisandrae Chinensis Fructus and Schisandrae Sphenantherae Fructus based on fingerprint profiles of hydrophilic components by high-performance liquid chromatography with ultraviolet detection

  • Ryusei Oshima
  • Akira KotaniEmail author
  • Minpei Kuroda
  • Kazuhiro Yamamoto
  • Yoshihiro Mimaki
  • Hideki Hakamata
Original Paper


High-performance liquid chromatography with ultraviolet detection (HPLC–UV) using 20 mM phosphate mobile phase and an octadecylsilyl column (Triart C18, 150 × 3.0 mm i.d., 3 μm) has been developed for the analysis of hydrophilic compounds in the water extract of Schisandrae Fructus samples. The present HPLC–UV method permits the accurate and precise determination of malic, citric, and protocatechuic acids in the Japanese Pharmacopoeia (JP) Schisandrae Fructus, Schisandrae Chinensis Fructus and Schisandrae Sphenantherae Fructus. The JP Schisandrae Fructus studied contains 27.98 mg/g malic, 107.08 mg/g citric, and 0.42 mg/g protocatechuic acids, with a relative standard deviation (RSD) of repeatability of <0.9% (n = 6). The content of malic acids in Schisandrae Chinensis Fructus is approximately ten times that in Schisandrae Sphenantherae Fructus. To examine whether the HPLC–UV method is applicable to the fingerprint-based discrimination of Schisandrae Fructus samples obtained from Chinese markets, principal component analysis (PCA) was performed using the determined contents of organic acids and the ratio of six characteristic unknown peaks derived from hydrophilic components to internal standard peak areas. On the score plots, Schisandrae Chinensis Fructus and Schisandrae Sphenantherae Fructus samples are clearly discriminated. Therefore, the HPLC–UV method for the analysis of hydrophilic components coupled with PCA has been shown to be practical and useful in the quality control of Schisandrae Fructus.


Organic acid Schisandrae Chinensis Fructus Schisandrae Sphenantherae Fructus Discrimination Principal component analysis 


Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11418_2017_1158_MOESM1_ESM.pdf (146 kb)
Supplementary material 1 (PDF 145 kb)


  1. 1.
    Huang T, Shen PN, Shen YN (2005) Preparative separation and purification of deoxyschisandrin and γ-schisandrin from Schisandra chinensis (Turcz.) Baill by high-speed counter-current chromatography. J Chromatogr A 1066(1–2):239–242CrossRefGoogle Scholar
  2. 2.
    Mu Y, Zhang J, Zhang S, Zhou HH, Toma D, Ren S, Huang L, Yaramus M, Baum A, Venkataramanan R, Xie W (2006) Traditional Chinese medicines Wu-Wei-Zi (Schisandra chinensis Baill) and Gan-Cao (Glycyrrhiza uralensis Fisch) activate pregnane X receptor and increase warfarin clearance in rats. J Pharmacol Exp Ther 316(3):1369–1377CrossRefGoogle Scholar
  3. 3.
    Jianga P, Lub Y, Chena D (2016) Authentication of Schisandra chinensis and Schisandra sphenanthera in Chinese patent medicines. J Pharm Biomed Anal 131:263–271CrossRefGoogle Scholar
  4. 4.
    Lu Y, Chen D-F (2009) Analysis of Schisandra chinensis and Schisandra sphenanthera. J Chromatogr A 1216(11):1980–1990CrossRefGoogle Scholar
  5. 5.
    Lu H, Liu GT (1992) Anti-oxidant activity of dibenzocyclooctene lignans isolated from Schisandraceae. Planta Med 58(4):311–313CrossRefGoogle Scholar
  6. 6.
    Wang Z, Chen H, Zhang W, Lan G, Zhang L (2011) Comparative studies on the chemical composition and antioxidant activities of Schisandra chinensis and Schisandra sphenanthera fruits. J Med Plant Res 5(7):1207–1216Google Scholar
  7. 7.
    Cheng N, Ren N, Gao H, Lei X, Zheng J, Cao W (2013) Antioxidant and hepatoprotective effects of Schisandra chinensis pollen extract on CCl4-induced acute liver damage in mice. Food Chem Toxicol 55:234–240CrossRefGoogle Scholar
  8. 8.
    Panossian A, Wikman G (2008) Pharmacology of Schisandra chinensis Bail.: an overview of Russian research and uses in medicine. J Ethnopharmacol 118(2):183–212CrossRefGoogle Scholar
  9. 9.
    Hancke JL, Burgos RA, Ahumada F (1990) Schisandra chinensis (Turcz.) Baill. Fitoterapia 70(5):451–471CrossRefGoogle Scholar
  10. 10.
    Zhao T, Mao G, Feng W, Mao R, Gu X, Li T, Li Q, Bao Y, Yang L, Wu X (2014) Isolation, characterization and antioxidant activity of polysaccharide from Schisandra sphenanthera. Carbohydr Polym 105:26–33CrossRefGoogle Scholar
  11. 11.
    Niu J, Xu G, Jiang S, Li H, Yuan G (2017) In vitro antioxidant activities and anti-diabetic effect of a polysaccharide from Schisandra sphenanthera in rats with type 2 diabetes. Int J Biol Macromol 94(1):154–160CrossRefGoogle Scholar
  12. 12.
    Huyke C, Enge K, Simon-Haarhaus B, Quirin KW, Schempp CM (2007) Composition and biological activity of different extracts from Schisandra sphenanthera and Schisandra chinensis. Planta Med 73(10):1116–1126CrossRefGoogle Scholar
  13. 13.
    Zhang SN, Wu SX (2007) Recent advances in chemical compositions and pharmacological actions of volatile oil from Schisandra chinensis (Turcz.) Baill. and Schisandra sphenanthera Rehd. et Wils. J Chin Med Mater 30:118–120Google Scholar
  14. 14.
    China pharmacopoeia committee (2015) Schisandrae chinensis fructus. In:  Pharmacopoeia of the people’s republic of china 2015(1):66–67; Schisandrae sphenantherae fructus. In: Ibid. 2015(1):244; The processing of crude drugs. In: Ibid. 2015(4):31–32Google Scholar
  15. 15.
    The ministry of health, labour and welfare (2016) Schisandra fruit. In: The japanese pharmacopoeia, 17th edn. p 1798Google Scholar
  16. 16.
    Pi Z, Yue H, Ma L, Ding L, Liu Z, Liu S (2011) Differentiation of various kinds of Fructus schisandrae by surface desorption atmospheric pressure chemical ionization mass spectrometry combined with principal component analysis. Anal Chim Acta 706(2):285–290CrossRefGoogle Scholar
  17. 17.
    Li H, Kikuchi R, Kumagai M, Amano T, Fujiwara K, Lin J-M, Ogawa N (2011) Producing area identification and medical component determination of Schisandra chinensis and Schisandra sphenanthera by near infrared spectroscopy. Bunseki Kagaku 60(10):813–817CrossRefGoogle Scholar
  18. 18.
    Huang Z, Huang Y, Xu S, Dong W, Pan Z, Wang L (2015) Discrimination of the traditional Chinese medicine from Schisandra fruits by flash evaporation-gas chromatography/mass spectrometry and fingerprint analysis. Chromatographia 78(15):1083–1093CrossRefGoogle Scholar
  19. 19.
    Zhu M, Gao Y, Fan G (2007) Microwave-assisted extraction and fingerprint studies of Schisandra chinensis (Turcz.) by high performance liquid chromatography. J Liq Chromatogr Relat Technol 30(1):123–133CrossRefGoogle Scholar
  20. 20.
    Liu HT, Zhang J, Li XB, Qi YD, Peng Y, Zhang BG, Xiao PG (2012) Chemical analysis of twelve lignans in the fruit of Schisandra sphenanthera by HPLC-PAD-MS. Phytomedicine 19(13):1234–1241CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Dan M, Wu J, Yang H, Huang H, Qi Y, Wei S, Okuyama T, Nakajima K (2008) Study on the chromatographic fingerprinting of Schisandra chinensis (Turcz.) Baill. by LC coupled with principal component analysis. Chromatographia 68(1):101–104CrossRefGoogle Scholar
  22. 22.
    Zhu M, Cao Y, Fan G (2007) Microwave-assisted extraction and fingerprint studies of Schisandra chinensis (Turcz.) by high performance liquid chromatography and gas chromatography. J Sep Sci 30(1):67–73CrossRefGoogle Scholar
  23. 23.
    Wang J, Chen Y, Lin M, Fan G, Zhao W, Wu Y, Yan C, Wang J (2007) Development of a quality evaluation method for Fructus schisandrae by pressurized capillary electrochromatography. J Sep Sci 30(3):381–390CrossRefGoogle Scholar
  24. 24.
    Murakami T, Nagasawa M, Itokawa H, Inatomi H (1965) Studies on the water-soluble constituents of crude drugs. IV. On the free amino acids isolated from Fructus Viticis and Fructus Schizandrae. Shoyakugaku Zasshi 19(1):44–45Google Scholar
  25. 25.
    Taguchi H (1985) Chemistry of the constituents Schizandrae Fruits. J Tradit Sino Jpn Med 6(4):65–74Google Scholar
  26. 26.
    Zou D, Wang J, Zhang B, Xie S, Wang Q, Xu K, Lin R (2015) Analysis of chemical constituents in Wuzi-Yanzong-Wan by UPLC-ESI-LTQ-Orbitrap-MS. Molecules 20(12):21373–21404CrossRefGoogle Scholar
  27. 27.
    Selli S, Kelebek H (2015) Organic acids. In: Nollet LML, Toldra F (eds) Handbook of food analysis, 3rd edn. CRC Press, Boca Raton, pp 611–636Google Scholar
  28. 28.
    Famiani F, Battistelli A, Moscatello S, Cruz-Castillo JG, Walker RP (2015) The organic acids that are accumulated in the flesh of fruits: occurrence, metabolism and factors affecting their contents − a review. Rev Chapingo Ser Hortic J 21(2):97–128CrossRefGoogle Scholar
  29. 29.
    Yuan G, Liu Y, Li T, Wang Y, Sheng Y, Guan M (2011) Simultaneous and rapid determination of main lignans in different parts of Schisandra sphenanthera by micellar electrokinetic capillary chromatography. Molecules 16(5):3713–3722CrossRefGoogle Scholar
  30. 30.
    Ke HX, Li H, Su JC, Luo SL, Li L, He YX, Yang B (2015) Comparason for lignan content in Schisandrae Sphenantherae Fructus and Schisandrae Chinensis Fructus. Zhongguo Shiyan Fangjixue Zazhi 21(17):40–43Google Scholar
  31. 31.
    Li L, Xiao Y, Yu D, Ma Y, Huang W, Tian G, Chen L (2011) Determination of three organic acids in Schisandrae Chinensis Fructus by HPLC. Zhongguo Zhongyao Zazhi 36(23):3286–3289PubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhang Y, Li F, Huang F, Xie G, Wei R, Chen T, Liu J, Zhao A, Jia W (2014) Metabolomics analysis reveals variation in Schisandra chinensis metabolites from different origins. J Sep Sci 37(6):731–737CrossRefGoogle Scholar
  33. 33.
    Gonzalez M, Gonzalez V (2012) Organic acids. In: Nollet LML, Toldra F (eds) Food analysis by HPLC, 3rd edn. CRC Press, Boca Raton, pp 443–465Google Scholar
  34. 34.
    Zheng Y-J, Duan Y-T, Zhang Y-F, Pan Q-H, Li J-M, Huang W-D (2009) Determination of organic acids in red wine and must on only one RP-LC-column directly after sample dilution and filtration. Chromatographia 69(11–12):1391–1395CrossRefGoogle Scholar
  35. 35.
    Ikeya Y, Taguchi H, Yoshioka I, Kobayashi H (1979) The constituents of Schisandra chinensis BAILL. I. Isolation and structure determination of five new lignans, gomisin A, B, C, F and G, and the absolute structure of Schizandrin. Chem Pharm Bull 27(6):1383–1394CrossRefGoogle Scholar
  36. 36.
    Kurata H, Wang J-D, Narui T, Hashimoto T, Okuyama T (1990) Hematological studies on naturally occurring substance (part IV). Constituents of Chinese astringent drug (Kojuyaku) on blood coagulation and fibrinolys systems. Shoyakugaku Zasshi 44(2):101–104Google Scholar
  37. 37.
    Okamura N, Miki H, Orii H, Masaoka Y, Yamashita S, Kobayashi H, Yagi A (1999) Simultaneous high-performance liquid chromatographic determination of puerarin, daidzin, paeoniflorin, liquiritin, cinnamic acid, cinnamaldehyde and glycyrrhizin in Kampo medicines. J Pharm Biomed Anal 19(3–4):603–612CrossRefGoogle Scholar
  38. 38.
    Garcia-Parrilla MC, Camacho ML, Heredia FJ, Troncoso AM (1994) Separation and identification of phenolic acids in wine vinegars by HPLC. Food Chem 50(3):313–315CrossRefGoogle Scholar
  39. 39.
    Zhang M, Zheng J, Deng C, Song XM, Han L (2012) Vinegar steam effect on oil–water partition coefficients of fructus Schisandrae Sphenantherae. Shizhen Guoyi Guoyao 23(11):2695–2696Google Scholar
  40. 40.
    Zhang Y, Yang K, Zhang MX, Fan X (2013) Optimization of vinegar steamed processing of Schisandrae Sphenantherae Fructus with rsm. Zhongchengyao 35(9):1976–1980Google Scholar
  41. 41.
    Gao H, Tong X, Pei QY, Jia TZ (2014) Contents change of six kinds of lignans from Schisandrae Chinensis Fructus in processing by vinegar. Zhongguo Shiyan Fangjixue Zazhi 20(19):32–35Google Scholar
  42. 42.
    Ryan MD, Yueh A, Chen W-Y (1980) The electrochemical oxidation of substituted catechols. J Electrochem Soc 127(7):1489–1495CrossRefGoogle Scholar
  43. 43.
    Griffith RK (2013) Adrenergic receptors and drugs affecting adrenergic neurotransmission. In: Lemke TL, Roche VF, Williams DA, Zito SW (eds) Foye’s principles of medicinal chemistry, 7th edn. Lippincott Williams & Wilkins, Philadelphia, pp 340–364Google Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Analytical Chemistry, School of PharmacyTokyo University of Pharmacy and Life SciencesTokyoJapan
  2. 2.Department of Medicinal Pharmacognosy, School of PharmacyTokyo University of Pharmacy and Life SciencesTokyoJapan

Personalised recommendations