Advertisement

Journal of Natural Medicines

, Volume 72, Issue 1, pp 12–19 | Cite as

Biological activity of Entada phaseoloides and Entada rheedei

  • Sachiko Sugimoto
  • Katsuyoshi Matsunami
  • Hideaki OtsukaEmail author
Review In memoriam to Professor Shoji Shibata: Pioneer in Modern Pharmacognosy
  • 306 Downloads

Abstract

The aim of our study is to find functional compounds from natural resources. We focus on plants grown in tropical areas, especially Madagascar and Thailand, because they have unique flora and are expected to contain interesting compounds. We review the functional compounds of the seed kernels of Entada phaseoloides and E. rheedei and their biological activities such as anti-proliferation and melanogenesis inhibitory properties, etc.

Keywords

Entada phaseoloides Entada rheedei Anti-proliferation Entadoside Rheedeioside Entadamide 

Notes

Acknowledgements

The authors are grateful for access to the superconducting NMR instrument (JEOL JNM-LA500 and ECA-600K) and the Thermo Fisher Scientific LTQ Orbitrap XL mass spectrometer at the Natural Science Center for Basic Research and Development, Hiroshima University. This work was supported in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the Japan Society for the Promotion of Science. Thanks are also due to the Takeda Science Foundation for financial support.

References

  1. 1.
    Vorontsova MS, Besnard G, Forest F, Malakasi P, Moat J, Clayton WD, Ficinski P, Savva GM, Nanjarisoa OP, Razanatsoa J, Randriatsara FO, Kimeu JM, Luke WRQ, Kayombo C, Linder P (2016) Madagascar’s grasses and grasslands: anthropogenic or natural? Proc R Soc B 283:20152262.  https://doi.org/10.1098/rspb.2015.2262 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Myers N, Mittermeier RA, Mittermeier CA, da Fonseca AB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858.  https://doi.org/10.1038/35002501 CrossRefPubMedGoogle Scholar
  3. 3.
    Office of Natural Resources and Environmental Policy and Planning (2009) National report on the implementation of convention on biological diversity: 4th national report on 2009. Ministry of Natural Resources and Environment, BangkokGoogle Scholar
  4. 4.
    Yamashita-Higuchi Y, Sugimoto S, Matsunami K, Otsuka H (2014) Grevillosides J-Q, arbutin derivatives from the leaves of Grevillea robusta and their melanogenesis inhibitory activity. Chem Pharm Bull 62:364–372.  https://doi.org/10.1248/cpb.c13-00962 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nomoto Y, Harinantenaina L, Sugimoto S, Matsunami K, Otsuka H (2014) 3,4-seco-24-homo-28-nor-Cycloartane and drimane-type sesquiterpenes and their lactams from the EtOAc-soluble fraction of a leaf extract of Cinnamosma fragrans and their biological activity. J Nat Med 68:513–521.  https://doi.org/10.1007/s11418-014-0828-x CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nagashima J, Matsunami K, Otsuka H, Lhieochaiphant D, Lhieochaiphant S (2010) The unusual canangafruticosides A-E: five monoterpene glucosides, two monoterpenes and a monoterpene glucoside diester of the aryldihydronaphthalene lignan dicarboxylic acid from leaves of Cananga odorata var. fruticosa. Phytochemistry 71:1564–1572.  https://doi.org/10.1016/j.phytochem.2010.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Matsunami K, Nagashima J, Sugimoto S, Otsuka H, Takeda Y, Lhieochaiphant D, Lhieochaiphant S (2010) Megastigmane glucosides and an unusual monoterpene from the leaves of Cananga odorata var. odorata, and absolute structures of megastigmane glucosides isolated from C. odorata var. odorata and Breynia officinalis. J Nat Med 64:460–467.  https://doi.org/10.1007/s11418-010-0434-5 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Katsui H, Sugimoto S, Matsunami K, Otsuka H, Lhieochaiphant S (2017) Lignan diesters of canangafruticoside a from the leaves of Cananga odorata var. odorata. Chem Pharm Bull 65:97–101.  https://doi.org/10.1248/cpb.c16-00611 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Widyowati R, Sugimoto S, Yamano Y, Harjotaruno S, Otsuka H, Matsunami K (2016) New isolinariins C, D and E, flavonoid glycosides from Linaria japonica. Chem Pharm Bull 64:517–521.  https://doi.org/10.1248/cpb.c16-00073 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Samy MN, Fahim JR, Sugimoto S, Otsuka H, Matsunami K, Kamel MS (2017) Chodatiionosides A and B: two new megastigmane glycosides from Chorisia chodatii leaves. J Nat Med 71:321–328.  https://doi.org/10.1007/s11418-016-1052-7 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kitamura S, Murata G (1971) Gensyokunihonsyokubutsuzukan. Hoikusha 1:362Google Scholar
  12. 12.
    Barua AK (1956) Triterpenoids. III. The constitution of entagenic acid. Naturwissenschaften 43:250.  https://doi.org/10.1007/BF00617587 CrossRefGoogle Scholar
  13. 13.
    Barua AK, Chakrabarti P, Pal SK, Das B (1983) The structure and stereochemistry of entagenic acid. J Indian Chem Soc 47:195–198Google Scholar
  14. 14.
    Okada Y, Shibata S, Kamo O, Okuyama T (1988) Carbon-13 NMR spectral studies of entagenic acid to establish its structure. Chem Pharm Bull 36:5028–5030.  https://doi.org/10.1248/cpb.36.5028 CrossRefGoogle Scholar
  15. 15.
    Ikegami F, Shibasaki I, Ohmiya S, Ruangrungsi N, Murakoshi I (1985) Entadamide A, a new sulfur-containing amide from Entada phaseoloides seeds. Chem Pharm Bull 33:5153–5154.  https://doi.org/10.1248/cpb.33.5153 CrossRefGoogle Scholar
  16. 16.
    Ikegami F, Ohmiya S, Ruangrungsi N, Sakai S, Murakoshi I (1987) Entadamide B, a second new sulfur-containing amide from Entada phaseoloides. Phytochemistry 26:1525–1526.  https://doi.org/10.1016/S0031-9422(00)81850-6 CrossRefGoogle Scholar
  17. 17.
    Ikegami F, Sekine T, Duangteraprecha S, Matsushita N, Matsuda N, Ruangrungsi N, Murakoshi I (1989) Entadamide C, a sulfur-containing amide from Entada phaseoloides. Phytochemistry 28:881–882.  https://doi.org/10.1016/0031-9422(89)80135-9 CrossRefGoogle Scholar
  18. 18.
    Murakoshi I, Kidoguchi E, Kubota M, Haginiwa J, Ohmiya S, Otomatsu H (1982) Lupine alkaloids from Echinosophora koreensis. Phytochemistry 21:2385–2388.  https://doi.org/10.1016/0031-9422(82)85211-4 CrossRefGoogle Scholar
  19. 19.
    Okada Y, Shibata S, Ikekawa T, Javellana AMJ, Kamo O (1987) Entada saponin III, a saponin isolated from the bark of Entada phaseoloides. Phytochemistry 26:2789–2796.  https://doi.org/10.1016/S0031-9422(00)83592-X CrossRefGoogle Scholar
  20. 20.
    Bergsteinsson I, Noller CR (1934) Saponins and sapogenins. I. Echinocystic acid. J Am Chem Soc 56:1403–1405.  https://doi.org/10.1021/ja01321a059 CrossRefGoogle Scholar
  21. 21.
    Noller CR, Carson JF (1941) Saponins and sapogenins. XIX. The decarboxylation of echinocystic acid. J Am Chem Soc 63:2238–2239.  https://doi.org/10.1021/ja01853a059 CrossRefGoogle Scholar
  22. 22.
    Okada Y, Shibata S, Ikekawa T, Javellana AMJ, Kamo O (1988) Entada saponins (ES) II and IV from the bark of Entada phaseollides. Chem Pharm Bull 36:1264–1269.  https://doi.org/10.1248/cpb.36.1264 CrossRefGoogle Scholar
  23. 23.
    Dai J, Kardono LBS, Tsauri S, Padmawinata K, Pezzuto JM, Kinghorn AD (1991) Studies on Indonesian medicinal plants. Part 3. Phenylacetic acid derivatives and a thioamide glycoside from Entada phaseoloides. Phytochemistry 30:3749–3752.  https://doi.org/10.1016/0031-9422(91)80102-7 CrossRefGoogle Scholar
  24. 24.
    Chen L, Zhang Y, Ding G, Ba M, Guo Y, Zou Z (2013) Two new derivatives of 2,5-dihydroxyphenylacetic acid from the kernel of Entada phaseoloides. Molecules 18:1477–1482.  https://doi.org/10.3390/molecules18021477 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Freiburghaus F, Steck A, Pfander H, Brun R (1998) Bioassay-guided isolation of a diastereoisomer of kolavenol from Entada abyssinica active on Trypanosoma brucei rhodesiense. J Ethnopharmacol 61:179–183.  https://doi.org/10.1016/S0378-8741(98)00035-X CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zheng T, Hao X, Wang Q, Chen L, Jin S, Bian F (2016) Entada phaseoloides extract suppresses hepatic gluconeogenesis via activation of the AMPK signaling pathway. J Ethnopharmacol 193:691–699.  https://doi.org/10.1016/j.jep.2016.10.039 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Xiong H, Zheng Y, Yang G, Wang H, Mei Z (2015) Triterpene saponins with anti-inflammatory activity from the stems of Entada phaseoloides. Fitoterapia 103:33–45.  https://doi.org/10.1016/j.fitote.2015.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Xing S, Wang M, Peng Y, Dong Y, Li X (2015) Intestinal bacterial metabolism and anti-complement activities of three major components of the seeds of Entada phaseoloides. J Nat Med 69:171–177.  https://doi.org/10.1007/s11418-014-0874-4 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Xiong H, Mei Z, Yang G, Mo S, Yang X, Zhang P, Wu J (2013) Triterpene saponins from Entada phaseoloides. Helv Chim Acta 96:1579–1589.  https://doi.org/10.1002/hlca.201200491 CrossRefGoogle Scholar
  30. 30.
    Mo S, Xiong H, Shu G, Yang X, Wang J, Zheng C, Xiang W, Mei Z (2013) Phaseoloideside E, a novel natural triterpenoid saponin identified from Entada phaseoloides, induces apoptosis in Ec-109 esophageal cancer cells through reactive oxygen species generation. J Pharmacol Sci 122:163–175.  https://doi.org/10.1254/jphs.12193FP CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Dong Y, Shi H, Yang H, Peng Y, Wang M, Li X (2012) Antioxidant phenolic compounds from the stems of Entada phaseoloides. Chem Biodivers 9:68–79.  https://doi.org/10.1002/cbdv.201100002 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Nzowa LK, Barboni L, Teponno RB, Ricciutelli M, Lupidi G, Quassinti L, Bramucci M, Tapondjou LA (2010) Rheediinosides A and B, two antiproliferative and antioxidant triterpene saponins from Entada rheedii. Phytochemistry 71:254–261.  https://doi.org/10.1016/j.2009.10.004 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Iwamoto Y, Sugimoto S, Harinantenaina L, Matsunami K, Otsuka H (2012) Entadosides A-D, triterpene saponins and a glucoside of the sulphur-containing amide from the kernel nuts of Entada phaseoloides (L.) Merrill. J Nat Med 66:321–328.  https://doi.org/10.1007/s11418-011-0591-1 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dash SK, Padhy S (2006) Review on ethnomedicines for diarrhoea diseases from Orissa: prevalence versus culture. J Hum Ecol 20:59–64CrossRefGoogle Scholar
  35. 35.
    Uprety Y, Asselin H, Boon EK, Yadav S, Shrestha KKJ (2010) Indigenous uses and bio-efficacy of medicinal plants in Rasuwa district, Central Nepal. J Ethnobiol Ethnomed 6:3.  https://doi.org/10.1186/1746-4269-6-3 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tunsaringkarn T, Rungsiyothin A, Ruangrungsi N (2008) α-Glucosidase inhibitory activity of Thai mimosaceous plant extracts. J Health Res 22:29–33Google Scholar
  37. 37.
    Nzowa LK, Teponno RB, Tapondjou LA, Verotta L, Liao Z, Graham D, Zink MC, Barboni L (2013) Two new tryptophan derivatives from the seed kernels of Entada rheedei: effects on cell viability and HIV infectivity. Fitoterapia 87:37–42.  https://doi.org/10.1016/j.fitote.2013.03.017 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sugimoto S, Matsunami K, Otsuka H (2011) Medicinal plants of Thailand. I: structures of rheedeiosides A-D and cis-entadamide A β-D-glucopyranoside from the seed kernels of Entada rheedei. Chem Pharm Bull 59:466–471.  https://doi.org/10.1248/cpb.59.466 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sugimoto S, Matsunami K, Otsuka H (2012) Medicinal plants of Thailand. II: chemical studies on the seed kernels of Entada rheedei Sprengel. J Nat Med 66:552–557.  https://doi.org/10.1007/s11418-011-0608-9 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661.  https://doi.org/10.1021/acs.jnatprod.5b01055 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK 2017

Authors and Affiliations

  • Sachiko Sugimoto
    • 1
  • Katsuyoshi Matsunami
    • 1
  • Hideaki Otsuka
    • 2
    Email author
  1. 1.Department of Pharmacognosy, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
  2. 2.Faculty of PharmacyYasuda Women’s UniversityHiroshimaJapan

Personalised recommendations