Advertisement

Journal of Natural Medicines

, Volume 72, Issue 1, pp 317–325 | Cite as

Ellagic acid glycosides with hepatoprotective activity from traditional Tibetan medicine Potentilla anserina

  • Toshio MorikawaEmail author
  • Katsuya Imura
  • Yoshinori Akagi
  • Osamu Muraoka
  • Kiyofumi Ninomiya
Note

Abstract

Two new gallic acid glycosides, potentillanosides G (1) and H (2), were newly isolated from the methanol extract of the tuberous roots of Potentilla anserina (Rosaceae), together with a known compound, ellagic acid 3-O-α-l-rhamnopyranoside (3). Their structures were elucidated on the basis of chemical and physicochemical evidence. Among the constituents, potentillanoside H (2, IC50 = 99.5 μM) was found to show hepatoprotective activity.

Keywords

Potentillanoside Ellagic acid glycoside Potentilla anserina Hepatoprotective activity Rosaceae 

Notes

Acknowledgements

This work was supported by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2014–2018, Japan (S1411037, TM) as well as JSPS KAKENHI, Japan, Grant numbers 15K08008 (TM), 15K08009 (KN), and 16K08313 (OM). Financial support by the Kobayashi International Scholarship Foundation, Japan, is also acknowledged (TM).

References

  1. 1.
    Morikawa T, Ninomiya K, Imura K, Yamaguchi T, Akagi Y, Yoshikawa M, Hayakawa T, Muraoka O (2014) Hepatoprotective triterpenes from traditional Tibetan medicine Potentilla anserina. Phytochemistry 102:169–181CrossRefGoogle Scholar
  2. 2.
    Wang J, Zhang J, Zhao B, Wang X, Wu Y, Yao J (2010) A comparison study on microwave-assisted extraction of Potentilla anserina L. polysaccharides with conventional method: molecule weight and antioxidant activities evaluation. Carbohydrate Polym 80:84–93CrossRefGoogle Scholar
  3. 3.
    Chen J-R, Yang Z-Q, Hu T-J, Yan Z-T, Niu T-X, Wang L, Cui D-A, Wang M (2010) Immunomodulatory activity in vitro and in vivo of polysaccharide from Potentilla anserina. Fitoterapia 81:1117–1124CrossRefGoogle Scholar
  4. 4.
    Xia L, You J (2011) The determination of amino acids composition of the traditional food Potentilla anserina L. root by high-performance liquid chromatography via fluorescent determination and mass spectrometry. Int J Food Sci Technol 46:1164–1170CrossRefGoogle Scholar
  5. 5.
    Guo T, Wei JQ, Ma JP (2016) Antitussive and expectorant activities of Potentilla anserina. Pharm Biol 54:807–811CrossRefGoogle Scholar
  6. 6.
    Schimmer O, Lindenbaum M (1995) Tannins with antimutagenic properties in the herb of Alchemilla species and Potentilla anserina. Planta Med 61:141–145CrossRefGoogle Scholar
  7. 7.
    Kombal R, Glasl H (1995) Flavan-3-ols and flavonoids from Potentilla anserina. Planta Med 61:484–485CrossRefGoogle Scholar
  8. 8.
    Li Q, Hui J, Shang D, Wu L, Ma X (2003) Investigation of the chemical constituents of the roots of Potentilla anserina L. in Tibet. Chin Pharm J 55:179–184CrossRefGoogle Scholar
  9. 9.
    Chu L, Wang L, Zhang Z, Gao H, Huang J, Sun B, Wu L (2008) Studies on the chemical constituents of Potentilla anserine L. Zhongguo Xiandai Zhongyao 10:10–12Google Scholar
  10. 10.
    Zhao Y-L, Cai G-M, Hong X, Shan L-M, Xiao X-H (2008) Anti-hepatitis B virus activities of triterpenoid saponin compound from Potentilla anserina L. Phytomedicine 15:253–258CrossRefGoogle Scholar
  11. 11.
    Li L, Zhao Y, Liu W, Feng F, Xie N (2013) HPLC with quadrupole TOF-MS and chemometrics analysis for the characterization of Folium Turpiniae from different regions. J Sep Sci 36:2552–2561CrossRefGoogle Scholar
  12. 12.
    Bai N, He K, Roller M, Zheng B, Chen X, Shao Z, Peng T, Zheng Q (2008) Active compounds from Lagerstroemia speciosa, insulin-like glucose uptake-stimulatory/inhibitory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. J Agric Food Chem 56:11668–11674CrossRefGoogle Scholar
  13. 13.
    Morikawa T, Imura K, Miyake S, Ninomiya K, Matsuda H, Yamashita C, Muraoka O, Hayakawa T, Yoshikawa M (2012) Promoting the effect of chemical constituents from the flowers of Poacynum hendersonii on adipogenesis in 3T3-L1 cells. J Nat Med 66:39–48CrossRefGoogle Scholar
  14. 14.
    Chaipech S, Morikawa T, Ninomiya K, Yoshikawa M, Pongpiriyadacha Y, Hayakawa T, Muraoka O (2012) Structures of two new phenolic glycosides, kaempferiaosides A and B, and hepatoprotective constituents from the rhizomes of Kaempferia parviflora. Chem Pharm Bull 60:62–69CrossRefGoogle Scholar
  15. 15.
    Morikawa T, Chaipech S, Matsuda H, Hamao M, Umeda Y, Sato H, Tamura H, Kon’i H, Ninomiya K, Yoshikawa M, Pongpiriyadacha Y, Hayakawa T, Muraoka O (2012) Antidiabetogenic oligostilbenoids and 3-ethyl-4-phenyl-3,4-dihydroisocoumarins from the bark of Shorea roxburghii. Bioorg Med Chem 20:832–840CrossRefGoogle Scholar
  16. 16.
    Morikawa T, Ninomiya K, Zhang Y, Yamada T, Nakamura S, Matsuda H, Muraoka O, Hayakawa T, Yoshikawa M (2012) Flavonol glycosides with lipid accumulation inhibitory activity from Sedum sarmentosum. Phytochemistry Lett 5:53–58CrossRefGoogle Scholar
  17. 17.
    Chaipech S, Morikawa T, Ninomiya K, Yoshikawa M, Pongporiyadacha Y, Hayakawa T, Muraoka O (2012) New flav-3-en-3-ol glycosides, kaempferiaosides C and D, and acetophenone glycosides, kaempferiaosides E and F, from the rhizomes of Keampferia parviflora. J Nat Med 66:486–492CrossRefGoogle Scholar
  18. 18.
    Morikawa T, Chaipech S, Matsuda H, Hamao M, Umeda Y, Sato H, Tamura H, Ninomiya K, Yoshikawa M, Pongpiriyadacha Y, Hayakawa T, Muraoka O (2012) Anti-hyperlipidemic constitunets from the bark of Shorea roxburghii. J Nat Med 66:516–524CrossRefGoogle Scholar
  19. 19.
    Morikawa T, Ninomiya K, Miyake S, Miki Y, Okamoto M, Yoshikawa M, Muraoka O (2013) Flavonol glycosides with lipid accumulation inhibitory activity and simultaneous quantitative analysis of 15 polyphenols and caffeine in the flower buds of Camellia sinensis from different regions by LCMS. Food Chem 140:353–360CrossRefGoogle Scholar
  20. 20.
    Morikawa T, Ninomiya K, Kuramoto H, Kamei I, Yoshikawa M, Muraoka O (2016) Phenylethanoid and phenylpropanoid glycosides with melanogenesis inhibitory activity from the flowers of Narcissus tazetta var. chinensis. J Nat Med 70:89–101CrossRefGoogle Scholar
  21. 21.
    Ninomiya K, Motai C, Nishida E, Kitagawa N, Yoshihara K, Hayakawa T, Muraoka O, Li X, Nakamura S, Yoshikawa M, Matsuda H, Morikawa T (2016) Acylated oleanane-type triterpene saponins from the flowers of Bellis perennis show anti-proliferative activities against human digestive tract carcinoma cell lines. J Nat Med 70:435–451CrossRefGoogle Scholar
  22. 22.
    Ye L, Yang JS (1996) New ellagic glycosides and known triterpenoids from Duchesnea indica Focke. Acta Pharm Sin 31:844–848Google Scholar
  23. 23.
    Khac DD, Tran-Van S, Campos AM, Lallemand J-Y, Fetizon M (1990) Ellagic compounds from Diplopanax stachyanthus. Phytochemistry 29:251–256CrossRefGoogle Scholar
  24. 24.
    Zhang T, Zhang C-F, Wang Z-T, Xu L-S (2005) Studies on chemical constituents of Dendrobium trigonopus Rchb. f. Chin J Nat Med 3:30–33Google Scholar
  25. 25.
    Nawwar MAM, Hussein SAM, Merfort I (1994) NMR spectral analysis of polyphenols from Punica granatum. Phytochemistry 36:793–798CrossRefGoogle Scholar
  26. 26.
    Sato T (1991) Comparative spectroscopic characterization of synthesized isomers of di-O-methylated ellagic acids. Phytochem Anal 2:271–273CrossRefGoogle Scholar
  27. 27.
    Kosuge T, Ishida H, Yokota M, Yoshida M (1984) Studies on antihemorrhagic substances in herbs classified as hemostatics in Chinese medicine. III. On the antihemorrhagic principle in Sanguisorba officinallis L. Chem Pharm Bull 32:4478–4481CrossRefGoogle Scholar
  28. 28.
    Matsuda H, Ninomiya K, Morikawa T, Yoshikawa M (1998) Inhibitory effect and action mechanism of sesquiterpenes from Zedoariae Rhizoma on d-galactosamine/lipopolysaccharide-induced liver injury. Bioorg Med Chem Lett 8:339–344CrossRefGoogle Scholar
  29. 29.
    Matsuda H, Morikawa T, Ninomiya K, Yoshikawa M (2001) Hepatoprotective constituents from Zedoariae Rhizoma: absolute stereostructures of three new carabrane-type sesquiterpenes, curcumenolactonea A, B, and C. Bioorg Med Chem 9:909–916CrossRefGoogle Scholar
  30. 30.
    Morikawa T, Matsuda H, Ninomiya K, Yoshikawa M (2002) Medicinal foodstuffs. XXIX. potent protective effects of sesquiterpenes and curcumin from Zedoariae Rhizoma on liver injury induced by d-galactosamine/lipopolysaccharide or tumor necrosis factor-α. Biol Pharm Bull 25:627–631CrossRefGoogle Scholar
  31. 31.
    Yoshikawa M, Xu F, Morikawa T, Ninomiya K, Matsuda H (2003) Anastatins A and B, new skeletal flavonoids with hepatoprotective activities from the desert plant Anastatica hierochuntica. Bioorg Med Chem Lett 13:1045–1049CrossRefGoogle Scholar
  32. 32.
    Yoshikawa M, Morikawa T, Kashima Y, Ninomiya K, Matsuda H (2003) Structures of new dammarane-type triterpene saponins from the flower buds of Panax notoginseng and hepatoprotective effects of principal ginseng saponins. J Nat Prod 66:922–927CrossRefGoogle Scholar
  33. 33.
    Xu F, Morikawa T, Matsuda H, Ninomiya K, Yoshikawa M (2004) Structures of sesquiterpenes and hepatoprotective constituents from the Egyptian herbal medicine Cyperus longus. J Nat Prod 67:569–576CrossRefGoogle Scholar
  34. 34.
    Matsuda H, Morikawa T, Xu F, Ninomiya K, Yoshikawa M (2004) New isoflavones and pterocarpanes with hepatoprotective activity from the stems of Erycibe expansa. Planta Med 70:1201–1209CrossRefGoogle Scholar
  35. 35.
    Yoshikawa M, Nishida N, Ninomiya K, Ohgushi T, Kubo M, Morikawa T, Matsuda H (2006) Inhibitory effects of coumarin and acetylene constituents from the roots of Angellica furcijuga on d-galactosamine/lipopolysaccharide-induced liver injury in mice and on nitric oxide production in lipopolysaccharide-activated mouse peritoneal macrophages. Bioorg Med Chem 14:456–463CrossRefGoogle Scholar
  36. 36.
    Morikawa T (2007) Search for bioactive constituents from several medicinal food: hepatoprotective, antidiabetic, and antiallergic activities. J Nat Med 61:112–126CrossRefGoogle Scholar
  37. 37.
    Li N, Morikawa T, Matsuda H, Ninomiya K, Li X, Yoshikawa M (2007) New flavanone oligoglycosides, theaflavanosides I, II, III, and IV, with hepatoprotective activity from the seeds of tea plant (Camellia sinensis). Heterocycles 71:1193–1201CrossRefGoogle Scholar
  38. 38.
    Ninomiya K, Morikawa T, Zhang Y, Nakamura S, Matsuda H, Muraoka O, Yoshikawa M (2007) Bioactive constituents from Chinese natural medicines. XXIII. Absolute structures of new megastigmane glycosides, sedumosides A4, A5, A6, H, and I, and hepatoprotective megastigmanes from Sedum sarmentosum. Chem Pharm Bull 55:1185–1191CrossRefGoogle Scholar
  39. 39.
    Zhang Y, Morikawa T, Nakamura S, Ninomiya K, Matsuda H, Muraoka O, Yoshikawa M (2007) Bioactive constituents from Chinese natural medicines. XXV. New flavonol bisdesmosides, sarmenosides I, II, III, and IV, with hepatoprotective activity from Sedum sarmentosum. Heterocycles 71:1565–1576CrossRefGoogle Scholar
  40. 40.
    Nakamura S, Li X, Matsuda H, Ninomiya K, Morikawa T, Yamaguti K, Yoshikawa M (2007) Bioactive constituents from Chinese natural medicines. XXVI. chemical structures and hepatoprotective effects of constituents from roots of Rhodiola sachalinensis. Chem Pharm Bull 55:1505–1511CrossRefGoogle Scholar
  41. 41.
    Matsuda H, Ninomiya K, Morikawa T, Yasuda D, Yamaguchi I, Yoshikawa M (2008) Protective effects of amide constituents from the fruit of Piper chaba on d-galactosamine/TNF-α-induced cell death in mouse hepatocytes. Bioorg Med Chem Lett 18:2038–2042CrossRefGoogle Scholar
  42. 42.
    Ninomiya K, Morikawa T, Xie H, Matsuda H, Yoshikawa M (2008) Bioactive constituents from Chinese natural medicines. XXXI. Hepatoprotective principles from Sinocrassula indica: structres of sinocrassosides A8, A9, A10, A11, and A12. Heterocycles 75:1983–1995CrossRefGoogle Scholar
  43. 43.
    Nakamura S, Okazaki Y, Ninomiya K, Morikawa T, Matsuda H, Yoshikawa M (2008) Medicinal flowers. XXIV. Chemical structures and hepatoprotective effects of constituents from flowers of Hedychium coronarium. Chem Pharm Bull 56:1704–1709CrossRefGoogle Scholar
  44. 44.
    Matsuda H, Ninomiya K, Morikawa T, Yasuda D, Yamaguchi I, Yoshikawa M (2009) Hepatoprotective amide constituents from the fruit of Piper chaba: structural requirements, mode of action, and new amides. Bioorg Med Chem 17:7313–7323CrossRefGoogle Scholar
  45. 45.
    Morikawa T (2010) Search for TNF-α sensitivety degradation principles from medicinal foods—hepatoprotective amide constituents from Thai natural medicine Piper chaba. Yakugaku Zasshi 130:785–791CrossRefGoogle Scholar
  46. 46.
    Morikawa T, Pan Y, Ninomiya K, Imura K, Matsuda H, Yoshikawa M, Yuan D, Muraoka O (2010) Acylated phenylethanoid oligoglycosides with hepatoprotective activity from the desert plant Cistanche tubulosa. Bioorg Med Chem 18:1882–1890CrossRefGoogle Scholar
  47. 47.
    Nakamura S, Xu F, Ninomiya K, Nakashima S, Oda Y, Morikawa T, Muraoka O, Yoshikawa M, Matsuda H (2014) Chemical structures and hepatoprotective effects of constituents from Cassia auriculata leaves. Chem Pharm Bull 62:1026–1031CrossRefGoogle Scholar
  48. 48.
    Ninomiya K, Miyazawa S, Ozeki K, Matsuo N, Muraoka O, Kikuchi T, Yamada T, Tanaka R, Morikawa T (2016) Hepatoprotective limonoids from andiroba (Carapa guianensis). Int J Mol Sci 17:591CrossRefGoogle Scholar
  49. 49.
    Ninomiya K, Chaipech S, Kunikata Y, Yagi R, Pongpiriyadacha Y, Muraoka O, Morikawa T (2017) Quantitative determination of stilbenoids and dihydroisocoumarins in Shorea roxburghii and evaluation of their hepatoprotective activity. Int J Mol Sci 18:451CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK 2017

Authors and Affiliations

  1. 1.Pharmaceutical Research and Technology InstituteKindai UniversityOsakaJapan
  2. 2.Antiaging CenterKindai UniversityOsakaJapan

Personalised recommendations