Journal of Natural Medicines

, Volume 72, Issue 1, pp 211–219 | Cite as

A novel mode of stimulating platelet formation activity in megakaryocytes with peanut skin extract

  • Takahiro Sato
  • Masako Akiyama
  • Ken-ichi Nakahama
  • Shujiro SeoEmail author
  • Masamichi Watanabe
  • Jin Tatsuzaki
  • Ikuo Morita
Original Paper


We report in this study novel biochemical activities of peanut skin extract (PEXT) on thrombocytopoiesis. Peanut skin, derived from Arachis hypogaea L., is a traditional Chinese medicine that is used to treat chronic hemorrhage. We have shown that oral administration of PEXT increases the peripheral platelet levels in mice. Recently, we reported a liquid culture system that is useful for investigating megakaryocytopoiesis and thrombocytopoiesis from human CD34+ cells. In this liquid culture system, PEXT was shown to enhance the formation of CD41+/DAPI cells (platelets), but had no effect on the formation of CD41+/DAPI+ cells (megakaryocytes) or on the DNA content. Furthermore, PEXT selectively stimulated proplatelet formation from cultured mature megakaryocytes and phorbol 12-myristate 13 acetate (PMA)-induced formation of platelet-like particles from Meg01 cells. Despite having no influence on the formation of megakaryocyte colony forming units (CFUs), PEXT increased the size of megakaryocytes during their development from CD34+ cells. PEXT showed no effect on the GATA-1 and NF-E2 mRNA levels, which are known to play an important role in thrombocytopoiesis and, based on the results of a pMARE-Luc (pGL3-MARE-luciferase) assay, had no influence on NF-E2 activation in Meg01 cells. These results suggest that PEXT accelerates proplatelet formation from megakaryocytes but does not influence the development of hematopoietic stem cells into megakaryocytes.


Platelet Megakaryocyte Peanut skin extract 


Compliance with ethical standards

Ethics approval

All experimental procedures were performed in accordance with guidelines of the Institutional Animal Care and Use Committee, and were approved by the Animal Research Committee, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (0060309, 070079).


  1. 1.
    Kaushansky K, Lok S, Holly RD, Broudy VC, Lin N, Bailey MC, Forstrom JW, Buddle MM, Oort PJ, Hagen FS, Roth GJ, Papayannopoulou T, Foster DC (1994) Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature 369:568–571CrossRefGoogle Scholar
  2. 2.
    Gewirtz AM (1995) Megakaryocytopoiesis: the state of the art. Thromb Haemost 74:204–209Google Scholar
  3. 3.
    Leven RM (1995) Differential regulation of integrin-mediated proplatelet formation and megakaryocyte spreading. J Cell Physiol 163:597–607CrossRefGoogle Scholar
  4. 4.
    Caen JP, Han ZC, Bellucci S, Alemany M (1999) Regulation of megakaryocytopoiesis. Haemostasis 29:27–40Google Scholar
  5. 5.
    Broudy VC, Lin NL, Kaushansky K (1995) Thrombopoietin (c-mpl ligand) acts synergistically with erythropoietin, stem cell factor, and interleukin-11 to enhance murine megakaryocyte colony growth and increases megakaryocyte ploidy in vitro. Blood 85:1719–1726Google Scholar
  6. 6.
    Ku H, Yonemura Y, Kaushansky K, Ogawa M (1996) Thrombopoietin, the ligand for the Mpl receptor, synergizes with steel factor and other early acting cytokines in supporting proliferation of primitive hematopoietic progenitors of mice. Blood 87:4544–4551Google Scholar
  7. 7.
    Drachman JG, Sabath DF, Fox NE, Kaushansky K (1997) Thrombopoietin signal transduction in purified murine megakaryocytes. Blood 89:483–492Google Scholar
  8. 8.
    Lecine P, Villeval JL, Vyas P, Swencki B, Xu Y, Shivdasani RA (1998) Mice lacking transcription factor NF-E2 provide in vivo validation of the proplatelet model of thrombocytopoiesis and show a platelet production defect that is intrinsic to megakaryocytes. Blood 92:1608–1616Google Scholar
  9. 9.
    Deveaux S, Cohen-Kaminsky S, Shivdasani RA, Andrews NC, Filipe A, Kuzniak I, Orkin SH, Roméo P, Mignotte V (1997) p45 NF-E2 regulates expression of thromboxane synthase in megakaryocytes. EMBO J 16:5654–5661CrossRefGoogle Scholar
  10. 10.
    Lecine P, Italiano JE Jr, Kim SW, Villeval JL, Shivdasani RA (2000) Hematopoietic-specific beta 1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF-E2. Blood 96:1366–1373Google Scholar
  11. 11.
    Kaushansky K (2008) Historical review: megakaryopoiesis and thrombopoiesis. Blood 111:981–986CrossRefGoogle Scholar
  12. 12.
    Sanders TH (2001) Non-detectable levels of trans-fatty acids in peanut butter. J Agric Food Chem 49:2349–2351CrossRefGoogle Scholar
  13. 13.
    Lou H, Yamazaki Y, Sasaki T, Uchida M, Tanaka H, Oka S (1999) A-type proanthocyanidins from peanut skins. Phytochemistry 51:297–308CrossRefGoogle Scholar
  14. 14.
    Lou H, Yuan H, Yamazaki Y, Sasaki T, Oka S (2001) Alkaloids and flavonoids from peanut skins. Planta Med 67:345–349CrossRefGoogle Scholar
  15. 15.
    Oka S, Sanokawa R, Fujita Y, Fujikawa F, Yamamoto S, Okita Y, Inoue M, Lou H, Tanaka H, Yamazaki Y, Komatsu T, Nagasawa T, Sasaki T, Uchida M (1998) Biological activities of hot water extract of peanut (Arachis hypogaea) seed coat. J Tradit Med 15:444–445Google Scholar
  16. 16.
    Sato T, Ono M, Fujita H, Tanaka N, Tomiyama J, Sakamoto Y, Takano Y, Murota S, Morita I (2003) Development of a liquid culture system for megakaryocyte terminal differentiation: fibrinogen promotes megakaryocytopoiesis but not thrombopoiesis. Br J Haematol 121:315–323CrossRefGoogle Scholar
  17. 17.
    Fujisaki T, Berger MG, Rose JS, Eaves CJ (1999) Rapid differentiation of a rare subset of adult human Lin- CD34- CD38- cells stimulated by multiple growth factors in vitro. Blood 94:1926–1932Google Scholar
  18. 18.
    Poloni A, Leoni P, Curzi L, Cantori I, Mancini S, Montanari M, Masia MC, Olivieri A (1999) Ex vivo pharmacological purging of leukapheresis collections with nitrogen mustard: amifostine pretreatment improves both early and late peripheral blood progenitor cell recovery. Exp Hematol 27:1548–1556CrossRefGoogle Scholar
  19. 19.
    Murate T, Hotta T, Tsushita K, Suzuki M, Yoshida T, Saga S, Saito H, Yoshida S (1991) Aphidicolin, an inhibitor of DNA replication, blocks the TPA-induced differentiation of a human megakaryoblastic cell line, MEG-01. Blood 78:3168–3177Google Scholar
  20. 20.
    Takeuchi K, Ogura M, Saito H, Satoh M, Takeuchi M (1991) Production of platelet-like particles by a human megakaryoblastic leukemia cell line (MEG-01). Exp Cell Res 193:223–226CrossRefGoogle Scholar
  21. 21.
    Igarashi K, Kataoka K, Itoh K, Hayashi N, Nishizawa M, Yamamoto M (1994) Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins. Nature 1994:568–572CrossRefGoogle Scholar
  22. 22.
    Vyas P, Ault K, Jackson CW, Orkin SH, Shivdasani RA (1999) Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood 93:2867–2875Google Scholar
  23. 23.
    Tomochika K, Shimizu-Ibuka A, Tamura T, Mura K, Abe N, Onose J, Arai S (2011) Effects of peanut-skin procyanidin A1 on degranulation of RBL-2H3 cells. Biosci Biotechnol Biochem 75:1644–1648CrossRefGoogle Scholar
  24. 24.
    Bartley TD, Bogenberger J, Hunt P, Li YS, Lu HS, Martin F, Chang MS, Samal B, Nichol JL, Swift S, Johnson MJ, Hsu RY (1994) Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell 77:1117–1124CrossRefGoogle Scholar
  25. 25.
    Miyazaki H (2000) Future prospect of thrombopoietin. Jpn J Transfus Med 4:311–331Google Scholar
  26. 26.
    Erickson-Miller CL, Delorme E, Tian S, Hopson CB, Landis AJ, Valoret EI, Sellers TS, Rosen J, Miller SG, Luengo JI, Duffy KJ, Jenkins JM (2009) Preclinical activity of eltrombopag (SB-497115), an oral, nonpeptide thrombopoiertin receptor agonist. Stem Cells 27:424–430CrossRefGoogle Scholar
  27. 27.
    Broudy VC, Lin NL (2004) AMG531 stimulates megakaryopoiesis in vitro by binding to Mpl. Cytokine 25:52–60CrossRefGoogle Scholar
  28. 28.
    Currao M, Balduini CL, Balduini A (2013) High dose of romiplostim induce proliferation and reduce proplatelet formation by human megakaryocytes. PLoS One 8:e54723CrossRefGoogle Scholar
  29. 29.
    Horie K, Miyazaki H, Hagiwara T, Tahara E, Matsumoto A, Kadoya T, Ogami K, Kato T (1997) Action of thrombopoietin at the megakaryocyte progenitor level is critical for the subsequent proplatelet production. Exp Hematol 25:169–176Google Scholar
  30. 30.
    Schulze H, Korpal M, Hurov J, Kim SW, Zhang J, Cantley LC, Graf T, Shivdasani RA (2006) Characterization of the megakaryocyte demarcation membrane system and its role in thrombopoiesis. Blood 107:3868–3875CrossRefGoogle Scholar
  31. 31.
    De Botton S, Sabri S, Daugas E, Zermati Y, Guidotti JE, Hermine O, Kroemer G, Vainchenker W, Debili N (2002) Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 100:1310–1317CrossRefGoogle Scholar
  32. 32.
    O’Brien JJ, Spinelli SL, Tober J, Blumberg N, Francis CW, Taubman MB, Palis J, Seweryniak KE, Gertz JM, Phipps RP (2008) 15-Deoxy-Δ12,14-PGJ2 enhances platelet production from megakaryocytes. Blood 112(10):4051–4060CrossRefGoogle Scholar
  33. 33.
    Takayama M, Jujita R, Suzuki M, Okuyama R, Aiba S, Motohashi H, Yamamoto M (2010) Genetic analysis of hierarchical regulation for Gata1 and NF-E2 p45 gene expression in megakaryopoiesis. Mol Cell Biol 30:2668–2680CrossRefGoogle Scholar
  34. 34.
    Nagata Y, Yoshikawa J, Hashimoto A, Yamamoto M, Payne AH, Todokoro K (2003) Proplatelet formation of megakaryocytes is triggered by autocrine-synthesized estradiol. Genes Dev 17:2864–2869CrossRefGoogle Scholar
  35. 35.
    Tiwari S, Italiano JE Jr, Barral DC, Mules EH, Novak EK, Swank RT, Seabra MC, Shivdasani RA (2003) A role for Rab27b in NF-E2-dependent pathways of platelet formation. Blood 102:3970–3979CrossRefGoogle Scholar
  36. 36.
    Eto K, Nishikii H, Ogaeri T, Suetsugu S, Kamiya A, Kobayashi T, Yamazaki D, Oda A, Takenawa T, Nakauchi H (2007) The WAVE2/Abi1 complex differentially regulates megakaryocyte development and spreading: implications for platelet biogenesis and spreading machinery. Blood 110:3637–3647CrossRefGoogle Scholar
  37. 37.
    Tanaka N, Sato T, Fujita H, Morita I (2004) Constitutive expression and involvement of cyclooxygenase-2 in human megakaryocytopoiesis. Arterioscler Thromb Vasc Biol 24:607–612CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK 2017

Authors and Affiliations

  • Takahiro Sato
    • 1
  • Masako Akiyama
    • 1
  • Ken-ichi Nakahama
    • 1
  • Shujiro Seo
    • 2
    Email author
  • Masamichi Watanabe
    • 2
  • Jin Tatsuzaki
    • 2
  • Ikuo Morita
    • 1
  1. 1.Department of Cellular Physiological Chemistry, Graduate SchoolTokyo Medical and Dental UniversityTokyoJapan
  2. 2.Functional and Phytochemical LaboratoryTokiwa Phytochemical Co., Ltd.Sakura-shiJapan

Personalised recommendations