Advertisement

Journal of Natural Medicines

, Volume 72, Issue 1, pp 220–229 | Cite as

Naphthalene glycosides in the Thai medicinal plant Diospyros mollis

  • Takaharu Suwama
  • Keisuke Watanabe
  • Orawan Monthakantirat
  • Prathan Luecha
  • Hiroshi Noguchi
  • Kenji Watanabe
  • Kaoru UmeharaEmail author
Original Paper
  • 255 Downloads

Abstract

This study evaluated methanol extracts from the leaves and branches of the Thai medicinal plant Diospyros mollis (Ebenaceae). Seven triterpenes and 22 aromatic compounds, including five new compounds, were isolated, and their structures were determined. The new compounds had the following structures: diospyrol glycoside (makluoside A, 1), 8,8′-di-O-6-β-d-apiofuranosyl-β-d-glucopyranosyl-6,6′-dimethyl-2,3′-binaphthalene-1-ol-1′,4′- dione (makluoside B, 2), and 3-methyl-1,8- naphthalenediol glycosides (makluosides C-E, 35). Makluoside B is the first example of a naphthoquinone glycoside that has both a 3-methyl-1,8-naphthalenediol unit and a 5-hydroxy-7-methyl-1,4-naphthoquinone unit. The hyaluronidase inhibitory activity of the isolates was evaluated, revealing that one of the triterpene derivatives possessed moderate inhibitory activity.

Keywords

Diospyros mollis Ebenaceae Diospyrol glycoside Naphthoquinone glycoside Naphthalene glycoside Makluoside A–E Hyaluronidase inhibition 

Notes

Acknowledgements

This work was partially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 25460126 to K.U. We thank Philip Hawke of the University of Shizuoka Scientific English Program for proofreading the English in the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11418_2017_1134_MOESM1_ESM.pdf (4.7 mb)
Supplementary material 1 (PDF 4859 kb)

References

  1. 1.
    Mallavadhani UV, Panda AK, Rao YR (1998) Pharmacology and chemotaxonomy of Diospyros. Phytochemistry 49:901–951CrossRefGoogle Scholar
  2. 2.
    Molander M, Nielsen L, Sogaard S, Staerk D, Ronsted N, Diallo D, Chifundera KZ, Staden J, Jager AK (2014) Hyaluronidase, phospholipase A2 and protease inhibitory activity of plants used in traditional treatment of snakebite-induced tissue necrosis in Mali, DR Congo and South Africa. J Ethnopharmacol 157:171–180CrossRefGoogle Scholar
  3. 3.
    Salguero CP (2003) A Thai Herbal. Findhorn Press, Forres, p 98Google Scholar
  4. 4.
    Sadun EH, Vajrasthira S (1954) The effect of Ma-Klua (Diospyros mollis) in the treatment of human hookworm. J Parasit 40:49–53CrossRefGoogle Scholar
  5. 5.
    Bechtold T, Mussak R (2009) Handbook of Natural Colorants. Wiley, Hoboken, p 68CrossRefGoogle Scholar
  6. 6.
    Atjanasuppat K, Wongkham W, Meepowan P, Kittakoop P, Sobhon P, Bartlett A, Whitefield PJ (2009) In vitro screening for anthelmintic and antitumor activity of ethnomedicinal plants from Thailand. J Ethnopharmacol 123:475–482CrossRefGoogle Scholar
  7. 7.
    Yoshihira K, Tezuka M, Kanchanapee P, Natori S (1971) Naphthoquinone derivatives from the Ebenaceae. I. Diospyrol and the related naphthoquinones from Diospyros mollis Griff. Chem Pharm Bull 19:2271–2277CrossRefGoogle Scholar
  8. 8.
    Paphassarang S, Becchi M, Raynaud B (1984) A new diospyrol glycoside from Diospyros mollis Griff. Tetrahedron Lett 25:523–526CrossRefGoogle Scholar
  9. 9.
    Tanaka T, Furusawa M, Ito T, Iliya I, Oyama M, Iinuma M, Tanaka N, Murata J (2006) Phenolic constituents of leaves of Diospyros montana. Nat Prod Commun 2:55–59Google Scholar
  10. 10.
    Mongkolsuk S, Starwonvivat C (1965) 3-Methylanaphyhalene-1,8-diol from Diospyros mollis. J Chem Soc, p 1533Google Scholar
  11. 11.
    Loder JW, Mongkolsuk S, Robertson A, Whalley WB (1957) Diospyrol, a constituent of Diospyros mollis. J Chem Soc. doi: 10.1039/JR9570002233 CrossRefGoogle Scholar
  12. 12.
    Frost G, Csoka T, Stern R (1996) The hyalurinidases: a chemical, biological and clinical overview. Trends Glycosci Glycotecnol 8:419–434CrossRefGoogle Scholar
  13. 13.
    Warrel DA (2010) Snake bite. Lancet 375:77–88CrossRefGoogle Scholar
  14. 14.
    Tanaka T, Nakashima T, Ueda T, Tomii K, Kouno I (2007) Facile discrimination of aldose enantiomers by reversed-phase HPLC. Chem Pharm Bull 55:899–901CrossRefGoogle Scholar
  15. 15.
    Kakegawa H, Matsumoto H, Satou T (1985) Activation of hyaluronidase by metallic salts and compound 48/80, and inhibitory effect of anti-allergic agents on hyaluronidase. Chem Pharm Bull 33:642–646CrossRefGoogle Scholar
  16. 16.
    Haque MdE, Shekhar HU, Mohamad AU, Rahman H, Islam AKMM, Hossain MS (2006) Triterpeneoids from the stem bark of Avicennia officinalis. Dhaka Univ J Pharm Sci 5:53–57CrossRefGoogle Scholar
  17. 17.
    Yonemoto R, Shimada M, Maria DPT, Gunawan-Puteri MDPT, Kato E, Kawabara J (2014) α-Amylase inhibitory triterpene from Abrus precatorius leaves. J Agric Food Chem 62:8411–8414CrossRefGoogle Scholar
  18. 18.
    Tijjiani A, Ndukwe IG, Ayo RG (2012) Isolation and characterization of lup-20(29)-ene-3,28-diol (betulin) from the stem-bark of Adenium obesum (Apocynaceae). Trop J Pharm Res 11:259–262Google Scholar
  19. 19.
    Khaliq S, Volk FJ, Frahm AW (2007) Phytochemical investigation of Perovskia abrotanoides. Planta Med 73:77–83CrossRefGoogle Scholar
  20. 20.
    Kamboj A, Saluja AK (2011) Isolation of stigmasterol and β-sitosterol from petroleum ether extract of aerial parts of Ageratum conyzoides (Asteraceae). Int J Pharm Sci 3:94–96Google Scholar
  21. 21.
    Fuchino H, Satoh T, Tanaka N (1995) Chemical evaluation of Betula species in Japan. I. Constituents of Betula ermanii. Chem Pharm Bull 43:1937–1942CrossRefGoogle Scholar
  22. 22.
    Rudiyansyah Garson MJ (2006) Secondary metabolites from the wood bark of Durio zibethinus and Durio kutejensis. J Nat Prod 69:1218–1221CrossRefGoogle Scholar
  23. 23.
    Rahman MDA, Katayama T, Suzuki T, Nakagawa T (2007) Stereochemistry and biosynthesis of (+)-lyoniresinol, a syringyl tetrahydronaphtalene lignin in Lyonia ovalifolia var. elliptica I: isolation and stereochemistry of syringyl lignans and predicted precursors to (+)-lyoniresinol from wood. J Wood Sci 53:161–167CrossRefGoogle Scholar
  24. 24.
    Wikul A, Dasmud T, Kataoka K, Phuwapraisirian P (2012) (+)-Pinoresinol is a putative hypoglycemic agent in defatted sesame (Sesamum indicum) seeds though inhibiting α-glucosidase. Bioorg Med Chem Lett 22:5215–5217CrossRefGoogle Scholar
  25. 25.
    Yang XW, Zhao PJ, Ma YL, Xiao HT, Zuo YQ, He HP, Li L, Hao XJ (2007) Mixed lignin-neolignans from Tarenna attenuate. J Nat Prod 70:521–525CrossRefGoogle Scholar
  26. 26.
    Matsuda S, Kadota S, Tai T, Kikuchi T (1984) Isolation and structures of hedyotisol-A, -B, and -C novel diignans from Hedyotis lawsoniae. Chem Pharm Bull 32:5066–5069CrossRefGoogle Scholar
  27. 27.
    Yan X, Suzuki M, Ohnishi-Kameyama M, Sada Y, Nakanishi T, Nagata T (1999) Extraction and identification of antioxidants in the roots of yakon (Smallanthus sonchifolius). J Agric Food Chem 47:4711–4713CrossRefGoogle Scholar
  28. 28.
    Luecha P, Umehara K, Miyase T, Noguchi H (2009) Antiestrogenic constituents of the Thai medicinal plants Capparis flavicans and Vitex glabrata. J Nat Prod 72:1954–1959CrossRefGoogle Scholar
  29. 29.
    Kanchanapoom T, Kasai R, Yamasaki K (2002) Iridoid and phenolic diglycosides from Canthium berberidifolium. Phytochemistry 61:461–464CrossRefGoogle Scholar
  30. 30.
    Kitajima J, Kamoshita A, Ishikawa T, Takano A, Fukuda T, Isoda S, Ida Y (2003) glycosides of Atractylodes japonica. Chem Pharm Bull 51:152–157CrossRefGoogle Scholar
  31. 31.
    Sugiyama M, Kikuchi M (1991) Phenolic glycosides from Osmanthus asiaticus. Phytochemistry 30:3147–3149CrossRefGoogle Scholar
  32. 32.
    Zhong XN, Otsuka H, Ide T, Hirata E, Takeda Y (1999) Hydroquinone diglycoside acylestrers from the leaves of Myrsine seguinii. Phytochemistry 52:923–927CrossRefGoogle Scholar
  33. 33.
    Luo Q, Wang SM, Lu Q, Luo J, Cheng YX (2012) Identification of compounds from the water soluble extract of Cinnamomum cassia barks and their inhibitory effects against high-glucose-induced mesangial cells. Molecules 18:10930–10943CrossRefGoogle Scholar
  34. 34.
    Warashina T, Nagatani Y, Noro T (2005) Further constituents from the bark of Tabebuia impetiginosa. Phytochemistry 66:589–597CrossRefGoogle Scholar
  35. 35.
    Comte G, Vercauteren J, Chulia AJ, Allais DP, Delage C (1997) Phenylpropanoids from leaves of Juniperus phoenicea. Phytochemistry 45:1679–1682CrossRefGoogle Scholar
  36. 36.
    Tohda C, Nakamura N, Komatsu K, Hattori M (1999) Trigonelline-induced neurite outgrowth in human neuroblastoma SK-N-SH cells. Biol Pharm Bull 22:679–682CrossRefGoogle Scholar
  37. 37.
    Borsub L, Thebtaranonth Y, Ruchirwat S, Sadavongvivad C (1976) A new diglucoside from the anthelmintic berries of Diospyros mollis. Tetrahedron Lett 17:105–108CrossRefGoogle Scholar
  38. 38.
    Miyase T, Ueno A, Takizawa N, Kobayashi H, Oguchi H (1989) Ionone and lignin glycosides from Epimedium diphyllum. Phytochemistry 28:3483–3485CrossRefGoogle Scholar
  39. 39.
    Sankaram AVB, Reedy VVN (1984) Structure of ebenone, a possible biogenetic precursor of elliptinone, from Diospyros ebenum. Phytochemistry 23:2039–2042CrossRefGoogle Scholar
  40. 40.
    Ippoushi K, Yamaguchi Y, Itou H, Azuma K, Higashino H (2000) Evaluation of Inhibitory Effects of Vegetables and Herbs on hyaluronidase and identification of rosmarinic acid as a hyaluronidase inhibitor in lemon balm (Melissa officinalis L.). Food Sci Technol Res 6:74–77CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK 2017

Authors and Affiliations

  1. 1.School of Pharmaceutical SciencesUniversity of ShizuokaShizuokaJapan
  2. 2.Faculty of Pharmaceutical SciencesKhon Kaen UniversityKhon KaenThailand
  3. 3.Faculty of Pharmaceutical SciencesYokohama University of PharmacyYokohamaJapan

Personalised recommendations