Journal of Natural Medicines

, Volume 72, Issue 1, pp 136–144 | Cite as

Effect of Kaempferia parviflora extract on knee osteoarthritis

  • Hiroko Kobayashi
  • Ryo Suzuki
  • Kei Sato
  • Takatoshi Ogami
  • Hiroshi Tomozawa
  • Masahito Tsubata
  • Koji Ichinose
  • Masaki Aburada
  • Wataru Ochiai
  • Kiyoshi Sugiyama
  • Tsutomu ShimadaEmail author
Original Paper


Knee osteoarthritis (OA) is becoming more prevalent worldwide due to increases in the numbers of elderly and obese patients. Currently, pharmaceutical medicines used for the treatment of OA are for symptomatic therapy and therefore new therapeutic agents are needed. Kaempferia parviflora (KP) is a plant growing naturally in Southeast Asia and has various pharmacological effects including an anti-inflammatory effect, but no effect on OA has yet been reported. We therefore conducted a search for the effects KP and the active components of KP extract (KPE) exert on OA as well as its mechanism of action. Results from a study of KPE using the monoiodoacetic acid rat OA model revealed that KPE reduced the pain threshold and severity of osteoarthritic cartilage lesions. The mechanism of action and active components were then investigated using IL-1β-treated human knee-derived chondrocytes. KPE, as well as 5,7-dimethoxyflavone and 5,7,4′-trimethoxyflavone, which are key constituents of KPE and highly absorbable into the body, reduced the expression of matrix metalloproteinases (MMPs), which are the main extracellular matrix enzymes that degrade collagen within cartilage. As mentioned above, KPE acted to suppress OA and 5,7-dimethoxyflavone and 5,7,4′-trimethoxyflavone were shown to be involved as part of KPE’s mechanism that inhibits MMPs.


Kaempferia parviflora Osteoarthritis Matrix metalloproteinases Polymethoxyflavonoids 


  1. 1.
    Okada Y (2000) Matrix-degrading metalloproteinases and their roles in joint destruction. Mod Rheumatol 10:121–128. doi: 10.3109/s101650070018 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Akase T, Shimada T, Terabayashi S, Ikeya Y, Sanada H, Aburada M (2011) Antiobesity effects of Kaempferia parviflora in spontaneously obese type II diabetic mice. J Nat Med 63:73–80CrossRefGoogle Scholar
  3. 3.
    Shimada T, Horikawa T, Ikeya Y, Matsuo H, Kinoshita K, Taguchi T, Ichinose K, Takahashi K, Aburada M (2011) Preventive effect of Kaempferia parviflora ethyl acetate extract and its major components polymethoxyflavonoid on metabolic diseases. Fitoterapia 82:1272–1278CrossRefGoogle Scholar
  4. 4.
    Kobayashi H, Horiguchi-Babamoto E, Suzuki M, Makihara H, Tomozawa H, Tsubata M, Shimada T, Sugiyama K, Aburada M (2016) Effects of ethyl acetate extract of Kaempferia parviflora on brown adipose tissue. J Nat Med 70:54–61. doi: 10.1007/s11418-015-0936-2 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Matsushita M, Yoneshiro T, Aita S, Kamiya T, Kusaba N, Yamaguchi K, Takagaki K, Kameya T, Sugie H, Saito M (2015) Kaempferia parviflora extract increases whole-body energy expenditure in humans: roles of brown adipose tissue. J Nutr Sci Vitaminol (Tokyo) 61:79–83. doi: 10.3177/jnsv.61.79 CrossRefGoogle Scholar
  6. 6.
    Hidaka M, Horikawa K, Akase T, Makihara H, Ogami T, Tomozawa H, Tsubata M, Ibuki A, Matsumoto Y (2017) Efficacy of Kaempferia parviflora in a mouse model of obesity-induced dermatopathy. J Nat Med 71:59–67. doi: 10.1007/s11418-016-1027-8 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tewtrakul S, Subhadhirasakul S (2008) Effects of compounds from Kaempferia parviflora on nitric oxide, prostaglandin E2 and tumor necrosis factor-alpha productions in RAW264.7 macrophage cells. J Ethnopharmacol 120:81–84. doi: 10.1016/j.jep.2008.07.033 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sae-wong C, Tansakul P, Tewtrakul S (2009) Anti-inflammatory mechanism of Kaempferia parviflora in murine macrophage cells (RAW 264.7) and in experimental animals. J Ethnopharmacol 124:576–580. doi: 10.1016/j.jep.2009.04.059 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sae-Wong C, Matsuda H, Tewtrakul S, Tansakul P, Nakamura S, Nomura Y, Yoshikawa M (2011) Suppressive effects of methoxyflavonoids isolated from Kaempferia parviflora on inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. J Ethnopharmacol 136:488–495. doi: 10.1016/j.jep.2011.01.013 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Horigome S, Yoshida I, Tsuda A, Harada T, Yamaguchi A, Yamazaki K, Inohana S, Isagawa S, Kibune N, Satoyama T, Katsuda S, Suzuki S, Watai M, Hirose N, Mitsue T, Shirakawa H, Komai M (2014) Identification and evaluation of anti-inflammatory compounds from Kaempferia parviflora. Biosci Biotechnol Biochem 78:851–860. doi: 10.1080/09168451.2014.905177 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Park JE, Pyun HB, Woo SW, Jeong JH, Hwang JK (2014) The protective effect of Kaempferia parviflora extract on UVB-induced skin photoaging in hairless mice. Photodermatol Photoimmunol Photomed 30:237–245. doi: 10.1111/phpp.12097 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tewtrakul S, Subhadhirasakul S, Kummee S (2008) Anti-allergic activity of compounds from Kaempferia parviflora. J Ethnopharmacol 116:191–193CrossRefGoogle Scholar
  13. 13.
    Welbat JU, Chaisawang P, Chaijaroonkhanarak W, Prachaney P, Pannangrong W, Sripanidkulchai B, Wigmore P (2016) Kaempferia parviflora extract ameliorates the cognitive impairments and the reduction in cell proliferation induced by valproic acid treatment in rats. Ann Anat 206:7–13. doi: 10.1016/j.aanat.2016.04.029 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wattanathorn J, Muchimapura S, Tong-Un T, Saenghong N, Thukhum-Mee W, Sripanidkulchai B (2012) Positive modulation effect of 8-week consumption of Kaempferia parviflora on health-related physical fitness and oxidative status in healthy elderly volunteers. Evid Based Complement Alternat Med 2012:732816. doi: 10.1155/2012/732816 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Promthep K, Eungpinichpong W, Sripanidkulchai B, Chatchawan U (2015) Effect of Kaempferia parviflora extract on physical fitness of soccer players: a randomized double-blind placebo-controlled trial. Med Sci Monit Basic Res 21:100–108. doi: 10.12659/MSMBR.894301 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Toda K, Hitoe S, Takeda S, Shimoda H (2016) Black ginger extract increases physical fitness performance and muscular endurance by improving inflammation and energy metabolism. Heliyon 2(5):e00115. doi: 10.1016/j.heliyon.2016.e00115 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sudwan P, Saenphet K, Saenphet S, Suwansirikul S (2006) Effect of Kaempferia parviflora Wall. ex. Baker on sexual activity of male rats and its toxicity. Southeast Asian J Trop Med Public Health Suppl 3:210–215Google Scholar
  18. 18.
    Temkitthawon P, Hinds TR, Beavo JA, Viyoch J, Suwanborirux K, Pongamornkul W, Sawasdee P, Ingkaninan K (2011) Kaempferia parviflora, a plant used in traditional medicine to enhance sexual performance contains large amounts of low affinity PDE5 inhibitors. J Ethnopharmacol 137:1437–1441. doi: 10.1016/j.jep.2011.08.025 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chaturapanich G, Chaiyakul S, Verawatnapakul V, Yimlamai T, Pholpramool C (2012) Enhancement of aphrodisiac activity in male rats by ethanol extract of Kaempferia parviflora and exercise training. Androl Suppl 1:323–328. doi: 10.1111/j.1439-0272.2011.01184.x CrossRefGoogle Scholar
  20. 20.
    Horigome S, Yoshida I, Ito S, Inohana S, Fushimi K, Nagai T, Yamaguchi A, Fujita K, Satoyama T, Katsuda SI, Suzuki S, Watai M, Hirose N, Mitsue T, Shirakawa H, Komai M (2017) Inhibitory effects of Kaempferia parviflora extract on monocyte adhesion and cellular reactive oxygen species production in human umbilical vein endothelial cells. Eur J Nutr 56:949–964. doi: 10.1007/s00394-015-1141-5 CrossRefGoogle Scholar
  21. 21.
    Banjerdpongchai R, Suwannachot K, Rattanapanone V, Sripanidkulchai B (2008) Ethanolic rhizome extract from Kaempferia parviflora Wall. ex. Baker induces apoptosis in HL-60 cells. Asian Pac J Cancer Prev 9:595–600Google Scholar
  22. 22.
    Banjerdpongchai R, Chanwikruy Y, Rattanapanone V, Sripanidkulchai B (2009) Induction of apoptosis in the human Leukemic U937 cell line by Kaempferia parviflora Wall.ex.Baker extract and effects of paclitaxel and camptothecin. Asian Pac J Cancer Prev 10:1137–1140Google Scholar
  23. 23.
    Ninomiya K, Matsumoto T, Chaipech S, Miyake S, Katsuyama Y, Tsuboyama A, Pongpiriyadacha Y, Hayakawa T, Muraoka O, Morikawa T (2016) Simultaneous quantitative analysis of 12 methoxyflavones with melanogenesis inhibitory activity from the rhizomes of Kaempferia parviflora. J Nat Med 70:179–189. doi: 10.1007/s11418-015-0955-z CrossRefPubMedGoogle Scholar
  24. 24.
    Mekjaruskul C, Jay M, Sripanidkulchai B (2012) Pharmacokinetics, bioavailability, tissue distribution, excretion, and metabolite identification of methoxyflavones in Kaempferia parviflora extract in rats. Drug Metab Dispos 40:2342–2353. doi: 10.1124/dmd.112.047142 CrossRefGoogle Scholar
  25. 25.
    Horikawa T, Shimada T, Okabe Y, Kinoshita K, Koyama K, Miyamoto K, Ichinose K, Takahashi K, Aburada M (2012) Polymethoxyflavonoids from Kaempferia parviflora induce adipogenesis on 3T3-L1 preadipocytes by regulating transcription factors at an early stage of differentiation. Biol Pharm Bull 35:686–692CrossRefGoogle Scholar
  26. 26.
    Okabe Y, Shimada T, Horikawa T, Kinoshita K, Koyama K, Ichinose K, Aburada M, Takahashi K (2014) Suppression of adipocyte hypertrophy by polymethoxyflavonoids isolated from Kaempferia parviflora. Phytomedicine 21:800–806. doi: 10.1016/j.phymed.2014.01.014 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pester JK, Stumpfe S, Steinert S, Marintschev I, Aurich M, Hofmann GO (2013) BMP-2 shows characteristic extracellular patterns in osteoarthritic cartilage: a preliminary report. GMS Interdiscip Plast Reconstr Surg DGPW. doi: 10.3205/iprs000029 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Schwager J, Richard N, Schoop R, Wolfram S (2014) A novel rose hip preparation with enhanced anti-inflammatory and chondroprotective effects. Med Inflamm 2014:105710CrossRefGoogle Scholar
  29. 29.
    Wang CC, Guo L, Tian FD, An N, Luo L, Hao RH, Wang B, Zhou ZH (2017) Naringenin regulates production of matrix metalloproteinases in the knee-joint and primary cultured articular chondrocytes and alleviates pain in rat osteoarthritis model. Braz J Med Biol Res 50:e5714PubMedPubMedCentralGoogle Scholar
  30. 30.
    You JS, Cho IA, Kang KR, Oh JS, Yu SJ, Lee GJ, Seo YS, Kim SG, Kim CS, Kim DK, Im HJ, Kim JS (2017) Coumestrol counteracts interleukin-1β-induced catabolic effects by suppressing inflammation in primary rat chondrocytes. Inflammation 40:79–91CrossRefGoogle Scholar
  31. 31.
    Imada K, Lin N, Liu C, Lu A, Chen W, Yano M, Sato T, Ito A (2008) Nobiletin, a citrus polymethoxy flavonoid, suppresses gene expression and production of aggrecanases-1 and -2 in collagen-induced arthritic mice. Biochem Biophys Res Commun 373:181–185CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK 2017

Authors and Affiliations

  • Hiroko Kobayashi
    • 1
  • Ryo Suzuki
    • 2
  • Kei Sato
    • 3
  • Takatoshi Ogami
    • 3
  • Hiroshi Tomozawa
    • 3
  • Masahito Tsubata
    • 3
  • Koji Ichinose
    • 2
  • Masaki Aburada
    • 2
  • Wataru Ochiai
    • 1
  • Kiyoshi Sugiyama
    • 1
  • Tsutomu Shimada
    • 4
    Email author
  1. 1.Graduate School of Pharmaceutical SciencesHoshi UniversityTokyoJapan
  2. 2.Faculty of PharmacyMusashino UniversityTokyoJapan
  3. 3.Research and Development DivisionToyo Shinyaku Co., Ltd.SagaJapan
  4. 4.Department of Hospital PharmacyUniversity Hospital, Kanazawa UniversityKanazawaJapan

Personalised recommendations