Journal of Natural Medicines

, Volume 71, Issue 4, pp 770–775 | Cite as

Phenylpropanoid composition in fig (Ficus carica L.) leaves

Note

Abstract

The leaves of fig (Ficus carica L.) have been used for traditional and Chinese medicine. We determined the composition of phenylpropanoids (polyphenols and furanocoumarins) as a functional agent in the leaves of 37 cultivars of fig. The most abundant polyphenol was caffeoylmalic acid (12.0–26.6 mg/g dry weight), followed by rutin (4.7–14.6 mg/g dry weight) and isoschaftoside (2.5–6.4 mg/g dry weight). Psoralen (3.8–23.0 mg/g dry weight) was dominant in the furanocoumarins. In molar amounts, psoralic acid glucoside (PAG), a precursor of psoralen, was equivalent to psoralen. Furanocoumarins and PAG were not detected in the leaves of only one cultivar, Grise de Tarascon. Fig leaves are potentially an excellent source of polyphenols such as caffeoylmalic acid and rutin. From the result of cluster analysis, some cultivars that contained large amount of polyphenols, and a small amount (e.g., Grise de Saint Jean) or no (Grise de Tarascon) furanocoumarins, were found. These cultivars are considered suitable for functional foods or medicinal products.

Keywords

Fig leaf Polyphenol Caffeoylmalic acid Furanocoumarin Psoralen Psoralic acid glucoside 

References

  1. 1.
    Ryo H (2005) Toho Eiyo Shinsho. Medical Yukon, Kyoto, Japan, pp 70–71Google Scholar
  2. 2.
    Barolo MI, Ruiz Mostacero N, López SN (2014) Ficus carica L. (Moraceae): an ancient source of food and health. Food Chem 164:119–127CrossRefPubMedGoogle Scholar
  3. 3.
    Chawla A, Kaur R, Sharma AK (2012) Ficus carica Linn.: a review on its pharmacognostic, phytochemical and pharmacological aspects. Int J Pharm Phytopharmacol Res 1:215–232Google Scholar
  4. 4.
    Serraclara A, Hawkins F, Pérez C, Domínguez E, Campillo JE, Torres MD (1998) Hypoglycemic action of an oral fig-leaf decoction in type-I diabetic patients. Diabetes Res Clin Pract 39:19–22CrossRefPubMedGoogle Scholar
  5. 5.
    Pérez C, Domínguez E, Ramiro JM, Romero A, Campillo JE, Torres MD (1996) A study on the glycaemic balance in streptozotocin-diabetic rats treated with an aqueous extract of Ficus carica (fig tree) leaves. Phytother Res 10:82–83CrossRefGoogle Scholar
  6. 6.
    Pérez C, Canal JR, Campillo JE, Romero A, Torres MD (1999) Hypotriglyceridaemic activity of Ficus carica leaves in experimental hypertriglyceridaemic rats. Phytother Res 13:188–191CrossRefPubMedGoogle Scholar
  7. 7.
    Patil VV, Patil VR (2011) Evaluation of anti-inflammatory activity of Ficus carica Linn. leaves. Indian J Nat Prod Resour 2:151–155Google Scholar
  8. 8.
    Takahashi T, Okiura A, Saito K, Kohno M (2014) Identification of phenylpropanoids in fig (Ficus carica L.) leaves. J Agric Food Chem 62:10076–10083. doi: 10.1021/jf5025938 CrossRefPubMedGoogle Scholar
  9. 9.
    Hunyadi A, Martins A, Hsieh TJ, Seres A, Zupko I (2012) Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats. PLoS One 7:1–6CrossRefGoogle Scholar
  10. 10.
    Ola MS, Ahmed MM, Ahmed R, Abuohashish HM, Al-Rejaie SS, Alhomida AS (2015) Neuroprotective effects of rutin in streptozotocin-induced diabetic rat retina. J Mol Neurosci 56:440–448CrossRefPubMedGoogle Scholar
  11. 11.
    Pu F, Mishima K, Irie K, Motohashi K, Tanaka Y, Egawa T, Kitamura Y, Egashira N, Iwasaki K, Fujiwara M (2007) Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radical maze task and neuronal death induced by repeated cerebral ischemia in rats. J Pharmacol Sci 104:329–334CrossRefPubMedGoogle Scholar
  12. 12.
    Boegge SC, Kesper S, Verspohl EJ, Nahrstedt A (1996) Reduction of ACh-induced contraction of rat isolated ileum by coptisine, (+)-caffeoylmalic acid, Chelidonium majus, and Corydalis lutea extracts. Planta Med 62:173–174CrossRefPubMedGoogle Scholar
  13. 13.
    Pinelli P, Ieri F, Vignolini P, Bacci L, Baronti S, Romani A (2008) Extraction and HPLC analysis of phenolic compounds in leaves, stalks, and textile fibers of Urtica dioica L. J Agric Food Chem 56:9127–9132CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang H, Li N, Li K, Li P (2014) Protective effect of Urtica dioica methanol extract against experimentally induced urinary calculi in rats. Mol Med Rep 10:3157–3162CrossRefPubMedGoogle Scholar
  15. 15.
    De Melo GO, Muzitano MF, Legora-Machado A, Almeida TA, De Oliveira DB, Kaiser CR, Koatz VL, Costa SS (2005) C-glycosylflavons from the aerial parts of Eleusine indica inhibit LPS-induced mouse lung inflammation. Planta Med 71:362–363CrossRefPubMedGoogle Scholar
  16. 16.
    Tani M (2002) Dermatopathy caused by chemical substance 36, Phytophototoxic contact dermatitis due to the plant. Med Drug J 38:2398–2405Google Scholar
  17. 17.
    Hussein A, Shugaev I (2012) Phototoxic response to Ficus carica leaf and shoot saps. Isr Med Assoc J 14:399–400PubMedGoogle Scholar
  18. 18.
    Schlatter J, Zimmerli B, Dick R, Panizzon R, Schlatter C (1991) Dietary intake and risk assessment of phototoxic furocoumarins in humans. Food Chem Toxicol 29:523–530CrossRefPubMedGoogle Scholar
  19. 19.
    Kao CH, Yu HS (1992) Comparison of the effect of 8-methoxypsoralen (8-MOP) plus UVA (PUVA) on human melanocytes in vitiligo vulgaris in vitro. J Invest Dermatol 98:734–740CrossRefPubMedGoogle Scholar
  20. 20.
    Halpern SM, Anstey AV, Dawe RS, Diffey BI, Farr PM, Ferguson J, Hawk JL, Ibbotson S, McGregor JM, Murphy GM, Thomas SE, Rhodes LE (2000) Guidelines for topical PUVA: a report of a workshop of the British Photodermatology Group. Br J Dermatol 142:22–31CrossRefPubMedGoogle Scholar
  21. 21.
    Iwanaga K, Okamoto R, Hayashi M, Hamahata Y, Arimune K, Miyazaki M, Kakemi M (2014) Inhibitory effect of intestinal cytochrome P450 3A by furanocoumarins in Kampo extracted medicines. Bull Osaka Univ Pharm Sci 8:109–118Google Scholar
  22. 22.
    Condit IJ (1955) Fig varieties: a monograph. Hilgardia 23:322–538CrossRefGoogle Scholar
  23. 23.
    Sullivan ML, Zeller WE (2013) Efficacy of various naturally occurring caffeic acid derivatives in preventing post-harvest protein losses in forages. J Sci Food Agric 93:219–226CrossRefPubMedGoogle Scholar
  24. 24.
    Kitabayashi H, Ujihara A, Hirose T, Minami M (1995) Varietal difference and heritability for rutin content in common buckwheat, Fagopyrum esculentum Moench. Breed Sci 45:75–79Google Scholar
  25. 25.
    Du SS, Zhang HM, Bai CQ, Wang CF, Liu QZ, Liu ZL, Wang YY, Deng ZW (2011) Nematocidal flavone-C-Glycosides against the root-knot nematode (Meloidogyne incognita) from Arisaema erubescens tubers. Molecules 16:5079–5086CrossRefPubMedGoogle Scholar
  26. 26.
    Simirgiotis MJ, Schmeda-Hirschmann G, Bórquez J, Kennelly EJ (2013) The Passiflora tripartite (banana passion) fruit: a source of bioactive flavonoid C-glycosides isolated by HSCCC and characterized by HPLC-DAD-ESI/MS/MS. Molecules 18:1672–1692CrossRefPubMedGoogle Scholar
  27. 27.
    Diawara MM, Trumble JT, Quiros CF, Hansen R (1995) Implications of distribution of linear furanocoumarins within celery. J Agric Food Chem 43:723–727CrossRefGoogle Scholar
  28. 28.
    Nigg HN, Strandberg JO, Beier RC, Petersen HD, Harrison JM (1997) Furanocoumarins in Florida celery varieties increased by fungicide treatment. J Agric Food Chem 45:1430–1436CrossRefGoogle Scholar
  29. 29.
    Lombaert GA, Siemens KH, Pellaers P, Mankotia M, Ng W (2001) Furanocoumarins in celery and parsnips: method and multiyear Canadian survey. J AOAC Int 84:1135–1143PubMedGoogle Scholar
  30. 30.
    Anetai M, Masuda T, Takasugi M (2002) Preparation and chemical evaluation of Angelicae Radix (Part VI) examination of furanocoumarins used as indicator substances. Rep Hokkaido Inst Public Health 52:19–23Google Scholar
  31. 31.
    Oyanagi M, Hiraoka N, Tomita Y, Ogawa T (1990) Variability of the furanocoumarin composition and isozyme pattern in Glehnia littoralis of different geographical origin. Shoyakugaku Zasshi 44:323–327Google Scholar
  32. 32.
    Sigurdsson S, Jonsdottir S, Gudbjarnason S (2012) Geographical variation of the furanocoumarin composition of the fruits of Icelandic Angelica archangelica. Z Naturforsch 67:1–7CrossRefGoogle Scholar
  33. 33.
    Qiao CF, Han QB, Song JZ, Mo SF, Kong LD, Kung HF, Xu HX (2006) Quality assessment of Fructus Psoraleae. Chem Pharm Bull 54:887–890CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2017

Authors and Affiliations

  1. 1.Toyo Institute of Food TechnologyKawanishiJapan
  2. 2.Department of BioengineeringTokyo Institute of TechnologyMidori-kuJapan

Personalised recommendations