Journal of Natural Medicines

, Volume 71, Issue 1, pp 96–104 | Cite as

Constituents from the leaves of Clausena lansium and their anti-inflammatory activity

  • De-Yang Shen
  • Ping-Chung Kuo
  • Shiow-Chyn Huang
  • Tsong-Long Hwang
  • Yu-Yi Chan
  • Po-Chuen Shieh
  • Nguyen Thi Ngan
  • Tran Dinh Thang
  • Tian-Shung Wu
Original Paper

Abstract

Five new acyclic amides, clausenalansamides C-G (15), clausenaline G (6) and (±)-5-(4-methylphenyl)-γ-valerolactone (7) reported from the natural source for the first time, were characterized from the leaves of Clausena lansium. Their structures were established by spectroscopic and spectrometric methods, and the absolute configurations of new compounds 15 were determined by electronic circular dichroism and single-crystal X-ray diffraction analyses. Eighteen compounds were evaluated for their anti-inflammatory activity and only imperatorin (11) and wampetin (12) displayed significant inhibition of fMLP/CB-induced superoxide anion generation with IC50 values of 1.7 ± 0.3 and 6.8 ± 1.1 μM, respectively.

Keywords

Clausenalansamide Electronic circular dichroism Single-crystal X-ray diffraction analysis Anti-inflammatory Superoxide anion generation 

Notes

Acknowledgments

This study was sponsored by the Ministry of Science and Technology, Taiwan, ROC granted to T.-S. Wu, and supported in part by the Vietnam National Foundation for Science and Technology Development (Nr. 104.01-2010.27), and Chang Gung Memorial Hospital (CMRPD1B0481~3, CMRPD1D0281~3, and BMRP450 to H-L Hwang). We also thank Associate Prof. Dr. Tran Huy Thai (Institute of Ecology and Biological Resources, Vietnamese Academy of Science and Technology, Vietnam) for the identification of the plant materials.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11418_2016_1033_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (PDF 2175 kb)

References

  1. 1.
    Huang CC (1959) Preliminary Study on Chinese Rutaceae (3). Acta Phytotax Sin 8:69–124Google Scholar
  2. 2.
    Yang MH, Cao YH, Li WX, Yang YQ, Cheng YY, Huang L (1987) Isolation and structural elucidation of clausenamide from the leaves of Clausena lansium (Lour.) Skeels. Acta Pharm Sin B 22:33–40Google Scholar
  3. 3.
    Yang MH, Chen YY, Huang L (1987) Studies on the chemical constituents of Clausena lansium (Lour.) Skeels II: The isolation and structural elucidation of neoclausenamide and cycloclausenamide. Acta Chin Sin 45:1170–1174Google Scholar
  4. 4.
    Yang MH, Chen YY, Huang L (1988) Three novel cyclic amides from Clausena lansium. Phytochemistry 27:445–450CrossRefGoogle Scholar
  5. 5.
    Lakshmi V, Raj K, Kapil RS (1998) Chemical constituents of Clausena lansium: Part III. Structure of lansamide-3 and 4. Indian J Chem Sect B Org Chem Incl Med Chem 37B:422–424Google Scholar
  6. 6.
    Ji X, van der Helm D, Lakshmi V, Agarwal SK, Kapil RS (1992) Structure of lansimide 2, a product from Clausena lansium. Acta Crystallogr Sect C Cryst Struct Commun 48:1082–1085CrossRefGoogle Scholar
  7. 7.
    Chokeprasert P, Charles AL, Sue KH, Huang TC (2007) Volatile components of the leaves, fruits and seeds of wampee [Clausena lansium (Lour.) Skeels]. J Food Compos Anal 20:52–56CrossRefGoogle Scholar
  8. 8.
    Wong KC, Wong SN, Sam TW, Chee SG (1998) Volatile constituents of Clausena lansium (Lour.) Skeels fruit. J Essent Oil Res 10:700–702CrossRefGoogle Scholar
  9. 9.
    Adebajo AC, Iwalewa EO, Obuotor EM, Ibikunle GF, Omisore NO, Adewunmi CO, Obaparusi OO, Klaes M, Adetogun GE, Schmidt TJ, Verspohl EJ (2009) Pharmacological properties of the extract and some isolated compounds of Clausena lansium stem bark: anti-trichomonal, antidiabetic, anti-inflammatory, hepatoprotective and antioxidant effects. J Ethnopharmacol 122:10–19CrossRefPubMedGoogle Scholar
  10. 10.
    Shen DY, Chao CH, Chan HH, Huang GJ, Hwang TL, Lai CY, Lee KH, Thang TD, Wu TS (2012) Bioactive constituents of Clausena lansium and a method for discrimination of aldose enantiomers. Phytochemistry 82:110–117CrossRefPubMedGoogle Scholar
  11. 11.
    Shen DY, Chan YY, Hwang TL, Juang SH, Huang SC, Kuo PC, Thang TD, Lee EJ, Damu AG, Wu TS (2014) Constituents of the roots of Clausena lansium and their potential anti-inflammatory activity. J Nat Prod 77:1215–1223CrossRefPubMedGoogle Scholar
  12. 12.
    Shen DY, Nguyen TN, Wu SJ, Shiao YJ, Hung HY, Kuo PC, Kuo DH, Thang TD, Wu TS (2014) γ- and δ-Lactams from the leaves of Clausena lansium. J Nat Prod 78:2521–2530CrossRefGoogle Scholar
  13. 13.
    Yang SC, Chung PJ, Ho CM, Kuo CY, Hung MF, Huang YT, Chang WY, Chang YW, Chan KH, Hwang TL (2013) Propofol inhibits superoxide production, elastase release, and chemotaxis in formyl peptide-activated human neutrophils by blocking formyl peptide receptor 1. J Immunol 190:6511–6519CrossRefPubMedGoogle Scholar
  14. 14.
    Yu HP, Hsieh PW, Chang YJ, Chung PJ, Kuo LM, Hwang TL (2011) 2-(2-Fluorobenzamido)benzoate ethyl ester (EFB-1) inhibits superoxide production by human neutrophils and attenuates hemorrhagic shock-induced organ dysfunction in rats. Free Radic Biol Med 50:1737–1748CrossRefPubMedGoogle Scholar
  15. 15.
    Scott AI (1964) Interpretation ultraviolet spectra of natural products, 2nd edn. Pergamon Press, New YorkGoogle Scholar
  16. 16.
    Maneerat W, Tha-in S, Cheenpracha S, Prawat U, Laphookhieo S (2011) New amides from the seeds of Clausana lansium. J Med Plant Res 5:2812–2815Google Scholar
  17. 17.
    Song WW, Zeng GZ, Peng WW, Chen KX, Tan NH (2014) Cytotoxic amides and quinolones from Clausena lansium. Helv Chim Acta 97:298–305CrossRefGoogle Scholar
  18. 18.
    Milner PH, Coates NJ, Gilpin ML, Spear SR, Eggleston DS (1996) SB-204900, a novel oxirane carboxamide from Clausena lansium. J Nat Prod 59:400–402CrossRefGoogle Scholar
  19. 19.
    Teshima KI, Kaneko T, Ohtani K, Kasai R, Lhieochaiphant S, Picheansoonthon C, Yamasak K (1998) Sulfur-containing glucosides from Clinacanthus nutans. Phytochemistry 48:831–835CrossRefGoogle Scholar
  20. 20.
    Liu GT, Li WX, Chen YY, Wei HL (1996) Hepatoprotective action of nine constituents isolated from the leaves of Clausena lansium in mice. Drug Dev Res 39:174–178CrossRefGoogle Scholar
  21. 21.
    Sowmithran D, Prasad KJR (1986) Heterocycles 2: synthesis of 1-hydroxycarbazoles and mukonine isomers. Heterocycles 24:711–717CrossRefGoogle Scholar
  22. 22.
    Wang B, Shen YM, Shi Y (2006) Enantioselective synthesis of γ-aryl-γ-butyrolactones by sequential asymmetric epoxidation, ring expansion, and Baeyer−Villiger oxidation. J Org Chem 71:9519–9521CrossRefPubMedGoogle Scholar
  23. 23.
    Yang MH, Chen YY, Huang L (1991) Studies on the chemical constituents of Clausena lansium (Lour.) Skeels. III. The structural elucidation of homo- and ζ- clausenamide. Chin Chem Lett 2:291–292Google Scholar
  24. 24.
    Yang L, Deng G, Wang DX, Huang ZT, Zhu JP, Wang MX (2007) Highly efficient and stereoselective N-vinylation of oxiranecarboxamides and unprecedented 8- endo-epoxy-arene cyclization: expedient and biomimetic synthesis of some Clausena alkaloids. Org Lett 9:1387–1390CrossRefPubMedGoogle Scholar
  25. 25.
    Shen DY, Juang SH, Kuo PC, Huang GJ, Chan YY, Damu AG, Wu TS (2013) Chemical constituents from Andrographis echioides and their anti-inflammatory activity. Int J Mol Sci 14:496–514CrossRefGoogle Scholar
  26. 26.
    Lin J (1989) Cinnamamide derivatives from Clausena lansium. Phytochemistry 28:621–622CrossRefGoogle Scholar
  27. 27.
    Maneerat W, Ritthiwigrom T, Cheenpracha S, Laphookhieo S (2012) Carbazole alkaloids and coumarins from Clausena lansium roots. Phytochem Lett 5:26–28CrossRefGoogle Scholar
  28. 28.
    Kofinas C, Chinou I, Loukis A, Harvala C, Maillard M, Hostettmann K (1998) Flavonoids and bioactive coumarins of Tordilium apulum. Phytochemistry 48:637–641CrossRefGoogle Scholar
  29. 29.
    Wu TS, Chan YY, Leu YL (1998) Sesquiterpenes from the root and stem of Aristolochia cucurbitafolia. J Nat Prod 61:511–514CrossRefGoogle Scholar
  30. 30.
    Ariza MR, Larsen TO, Petersen BO, Duus JØ, Barrero AF (2002) Penicillium digitatum metabolites on synthetic media and Citrus fruits. J Agric Food Chem 50:6361–6365CrossRefPubMedGoogle Scholar
  31. 31.
    Wu TS, Huang SC, Wu PL, Teng CM (1996) Carbazole alkaloids from Clausena excavata and their biological activity. Phytochemistry 43:133–140CrossRefPubMedGoogle Scholar
  32. 32.
    Vasskog T, Andersen JH, Hansen E, Svenson J (2012) Characterization and cytotoxicity studies of the rare 21:4 n-7 acid and other polyunsaturated fatty acids from the marine opisthobranch Scaphander lignarius, isolated using bioassay guided fractionation. Mar Drugs 10:2676–2690CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kuo PC, Yang ML, Hwang TL, Lai YY, Li YC, Thang TD, Wu TS (2013) Anti-inflammatory diterpenoids from Croton tonkinensis. J Nat Prod 76:230–236CrossRefPubMedGoogle Scholar
  34. 34.
    Wu TS, Huang SC, Wu PL (1996) Carbazole alkaloids from stem bark of Clausena excavata. Phytochemistry 43:1427–1429CrossRefGoogle Scholar
  35. 35.
    Hargus JA, Fronczek FR, Vicente MGH, Smith KM (2007) Mono-(L)-aspartylchlorine-6. Photochem Photobiol 83:1006–1015CrossRefPubMedGoogle Scholar
  36. 36.
    Cheng HH, Wang HK, Ito J, Bastow KF, Tachibana Y, Nakanishi Y, Xu Z, Luo TY, Lee KH (2001) Cytotoxic pheophorbide-related compounds from Clerodendrum calamitosum and C. cyrtophyllum. J Nat Prod 64:915–919CrossRefPubMedGoogle Scholar
  37. 37.
    Wu PL, Lin FW, Wu TS, Kuoh CS, Lee KH, Lee SJ (2004) Cytotoxic and anti-HIV principles from the rhizomes of Begonia nantoensis. Chem Pharm Bull 52:345–349CrossRefPubMedGoogle Scholar
  38. 38.
    Machida K, Kikuchi M (1996) Norisoprenoids from Viburnum dilatatum. Phytochemistry 41:1333–1336CrossRefGoogle Scholar
  39. 39.
    Macías FA, Lacret R, Varela RM, Nogueiras C, Molinillo JMG (2008) Bioactive apocarotenoids from Tectona grandis. Phytochemistry 69:2708–2715CrossRefPubMedGoogle Scholar
  40. 40.
    Adam W, Zhang A (2004) High π-facial selectivity through chelation of magnesium ions in the DMD epoxidation of α, β-unsaturated imides with chiral pyrrolidinone auxiliaries. Eur J Org Chem 2004:147–152CrossRefGoogle Scholar
  41. 41.
    Chen YR, Yang MH, Liu GT, Huang L (1989) 2,3-Dihydroxy-3-phenyl-N-(2-phenylethyl)- propionic acid amides derivatives thereof. US Patent 04826873Google Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2016

Authors and Affiliations

  • De-Yang Shen
    • 1
  • Ping-Chung Kuo
    • 1
  • Shiow-Chyn Huang
    • 2
  • Tsong-Long Hwang
    • 3
    • 4
    • 5
  • Yu-Yi Chan
    • 6
  • Po-Chuen Shieh
    • 7
  • Nguyen Thi Ngan
    • 8
  • Tran Dinh Thang
    • 8
  • Tian-Shung Wu
    • 1
    • 7
  1. 1.School of Pharmacy, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanROC
  2. 2.Department of PharmacyChia-Nan University of Pharmacy and ScienceTainanROC
  3. 3.Graduate Institute of Natural Products, College of MedicineChang Gung UniversityTaoyuanROC
  4. 4.Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry TechnologyCollege of Human Ecology, Chang Gung University of Science and TechnologyTaoyuanROC
  5. 5.Department of AnesthesiologyChang Gung Memorial HospitalTaoyuanROC
  6. 6.Department of BiotechnologySouthern Taiwan University of Science and TechnologyTainanTaiwan
  7. 7.Department of PharmacyTajen UniversityPingtungROC
  8. 8.Department of ChemistryVinh UniversityVinh CityVietnam

Personalised recommendations