Advertisement

Journal of Natural Medicines

, Volume 70, Issue 4, pp 749–759 | Cite as

Gastrodin reversed the traumatic stress-induced depressed-like symptoms in rats

  • Bombi Lee
  • Bongjun Sur
  • Mijung Yeom
  • Insop Shim
  • Hyejung Lee
  • Dae-Hyun Hahm
Original Paper

Abstract

Exposure to severe stress can lead to the development of neuropsychiatric disorders such as depression and post-traumatic stress disorder (PTSD) in at-risk individuals. Gastrodin (GAS), a primary constituent of an Oriental herbal medicine, has been shown to effectively treat various mood disorders. Thus, the present study aimed to determine whether GAS would ameliorate stress-associated depression-like behaviors in a rat model of single prolonged stress (SPS)-induced PTSD. Following the SPS procedure, rats received intraperitoneal administration of GAS (20, 50, or 100 mg/kg) once daily for 2 weeks. Subsequently, the rats performed the forced swimming test, and norepinephrine (NE) levels in the hippocampus were measured. Daily GAS (100 mg/kg) significantly reversed depression-like behaviors and restored SPS-induced increases in hippocampal NE concentrations as well as tyrosine hydroxylase expression in the locus coeruleus. Furthermore, the administration of GAS attenuated SPS-induced decreases in the hypothalamic expression of neuropeptide Y and the hippocampal mRNA expression of brain-derived neurotrophic factor. These findings indicate that GAS possesses antidepressant effects in the PTSD and may be an effective herbal preparation for the treatment of PTSD.

Keywords

Post-traumatic stress disorder Single prolonged stress Depression Norepinephrine Gastrodin 

Notes

Acknowledgments

This research was supported by a Grant from the National Research Foundation of Korea funded by the Korean government (MEST) (2013R1A1A2063051).

References

  1. 1.
    Serova LI, Laukova M, Alaluf LG, Sabban EL (2013) Intranasal infusion of melanocortin receptor four (MC4R) antagonist to rats ameliorates development of depression and anxiety related symptoms induced by single prolonged stress. Behav Brain Res 250:139–147CrossRefPubMedGoogle Scholar
  2. 2.
    Brunello N, Davidson JR, Deahl M, Kessler RC, Mendlewicz J, Racagni G, Shalev AY, Zohar J (2001) Posttraumatic stress disorder: diagnosis and epidemiology, comorbidity and social consequences, biology and treatment. Neuropsychobiology 43:150–162CrossRefPubMedGoogle Scholar
  3. 3.
    Nemeroff CB, Bremner JD, Foa EB, Mayberg HS, North CS, Stein MB (2006) Posttraumatic stress disorder: a state-of-the-science review. J Psychiatr Res 40:1–21CrossRefPubMedGoogle Scholar
  4. 4.
    Serova LI, Laukova M, Alaluf LG, Pucillo L, Sabban EL (2014) Intranasal neuropeptide Y reverses anxiety and depressive-like behavior impaired by single prolonged stress PTSD model. Eur Neuropsychopharmacol 24:142–147CrossRefPubMedGoogle Scholar
  5. 5.
    George SA, Knox D, Curtis AL, Aldridge JW, Valentino RJ, Liberzon I (2013) Altered locus coeruleus-norepinephrine function following single prolonged stress. Eur J Neurosci 37:901–909CrossRefPubMedGoogle Scholar
  6. 6.
    George SA, Stout SA, Tan M, Knox D, Liberzon I (2013) Early handling attenuates enhancement of glucocorticoid receptors in the prefrontal cortex in an animal model of post-traumatic stress disorder. Biol Mood Anxiety Disord 3:22–23CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Shea A, Walsh C, Macmillan H, Steiner M (2005) Child maltreatment and HPA axis dysregulation: relationship to major depressive disorder and post traumatic stress disorder in females. Psychoneuroendocrinology 30:162–178CrossRefPubMedGoogle Scholar
  8. 8.
    Sabban EL, Laukova M, Alaluf LG, Olsson E, Serova LI (2015) Locus coeruleus response to single-prolonged stress and early intervention with intranasal neuropeptide Y. J Neurochem 135:975–986CrossRefPubMedGoogle Scholar
  9. 9.
    Wilson CB, McLaughlin LD, Ebenezer PJ, Nair AR, Dange R, Harre JG, Shaak TL, Diamond DM, Francis J (2014) Differential effects of sertraline in a predator exposure animal model of post-traumatic stress disorder. Front Behav Neurosci 8:256–267PubMedPubMedCentralGoogle Scholar
  10. 10.
    Benarroch LC, Rodriguez A, Miledi R, Garcia-Alcocer G (2012) Serotonin receptors in hippocampus. Sci World J 2012:823493Google Scholar
  11. 11.
    Wilson CB, Ebenezer PJ, McLaughlin LD, Francis J (2014) Predator exposure/psychosocial stress animal model of post-traumatic stress disorder modulates neurotransmitters in the rat hippocampus and prefrontal cortex. PLoS One 9:e89104CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Peng Z, Wang H, Zhang R, Chen Y, Xue F, Nie H, Chen Y, Wu D, Wang Y, Wang H, Tan Q (2013) Gastrodin ameliorates anxiety-like behaviors and inhibits IL-1beta level and p38 MAPK phosphorylation of hippocampus in the rat model of posttraumatic stress disorder. Physiol Res 62:537–545PubMedGoogle Scholar
  13. 13.
    Stein MB, Kline NA, Matloff JL (2002) Adjunctive olanzapine for SSRI-resistant combat-related PTSD: a double-blind, placebo-controlled study. Am J Psychiatry 159:1777–1779CrossRefPubMedGoogle Scholar
  14. 14.
    Zohar J, Amital D, Miodownik C, Kotler M, Bleich A, Lane RM, Austin C (2002) Double-blind placebo-controlled pilot study of sertraline in military veterans with posttraumatic stress disorder. J Clin Psychopharmacol 22:190–195CrossRefPubMedGoogle Scholar
  15. 15.
    Iwamoto Y, Morinobu S, Takahashi T, Yamawaki S (2007) Single prolonged stress increases contextual freezing and the expression of glycine transporter 1 and vesicle-associated membrane protein 2 mRNA in the hippocampus of rats. Prog Neuropsychopharmacol Biol Psychiatry 31:642–651CrossRefPubMedGoogle Scholar
  16. 16.
    Wang X, Yan S, Wang A, Li Y, Zhang F (2014) Gastrodin ameliorates memory deficits in 3,3’-iminodipropionitrile-induced rats: possible involvement of dopaminergic system. Neurochem Res 39:1458–1466CrossRefPubMedGoogle Scholar
  17. 17.
    Sun W, Miao B, Wang XC, Duan JH, Ye X, Han WJ, Wang WT, Luo C, Hu SJ (2012) Gastrodin inhibits allodynia and hyperalgesia in painful diabetic neuropathy rats by decreasing excitability of nociceptive primary sensory neurons. PLoS One 7:e39647CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang Q, Chen G, Zeng S (2008) Distribution and metabolism of gastrodin in rat brain. J Pharm Biomed Anal 46:399–404CrossRefPubMedGoogle Scholar
  19. 19.
    An SJ, Park SK, Hwang IK, Choi SY, Kim SK, Kwon OS, Jung SJ, Baek NI, Lee HY, Won MH, Kang TC (2003) Gastrodin decreases immunoreactivities of gamma-aminobutyric acid shunt enzymes in the hippocampus of seizure-sensitive gerbils. J Neurosci Res 71:534–543CrossRefPubMedGoogle Scholar
  20. 20.
    Dai JN, Zong Y, Zhong LM, Li YM, Zhang W, Bian LG, Ai QL, Liu YD, Sun J, Lu D (2011) Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways. PLoS One 6:e21891CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Manavalan A, Ramachandran U, Sundaramurthi H, Mishra M, Sze SK, Hu JM, Feng ZW, Heese K (2012) Gastrodia elata Blume (tianma) mobilizes neuro-protective capacities. Int J Biochem Mol Biol 3:219–241PubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhao X, Zou Y, Xu H, Fan L, Guo H, Li X, Li G, Zhang X, Dong M (2012) Gastrodin protect primary cultured rat hippocampal neurons against amyloid-beta peptide-induced neurotoxicity via ERK1/2-Nrf2 pathway. Brain Res 1482:13–21CrossRefPubMedGoogle Scholar
  23. 23.
    Zeng X, Zhang S, Zhang L, Zhang K, Zheng X (2006) A study of the neuroprotective effect of the phenolic glucoside gastrodin during cerebral ischemia in vivo and in vitro. Planta Med 72:1359–1365CrossRefPubMedGoogle Scholar
  24. 24.
    Hsieh MT, Wu CR, Chen CF (1997) Gastrodin and p-hydroxybenzyl alcohol facilitate memory consolidation and retrieval, but not acquisition, on the passive avoidance task in rats. J Ethnopharmacol 56:45–54CrossRefPubMedGoogle Scholar
  25. 25.
    Jung JW, Yoon BH, Oh HR, Ahn JH, Kim SY, Park SY, Ryu JH (2006) Anxiolytic-like effects of Gastrodia elata and its phenolic constituents in mice. Biol Pharm Bull 29:261–265CrossRefPubMedGoogle Scholar
  26. 26.
    Serova LI, Tillinger A, Alaluf LG, Laukova M, Keegan K, Sabban EL (2013) Single intranasal neuropeptide Y infusion attenuates development of PTSD-like symptoms to traumatic stress in rats. Neuroscience 236:298–312CrossRefPubMedGoogle Scholar
  27. 27.
    Porsolt RD, Martin P, Lenègre A, Fromage S, Drieu K (1990) Effects of an extract of Ginkgo Biloba (EGB 761) on “learned helplessness” and other models of stress in rodents. Pharmacol Biochem Behav 36:963–971CrossRefPubMedGoogle Scholar
  28. 28.
    Gmeiner BM, Seelos CC (1995) Measurement of phosphotyrosine phosphatase activity using the Folin-Ciocalteu phenol reaction. Biochem Mol Biol Int 36:943–948PubMedGoogle Scholar
  29. 29.
    Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 3rd edn. Academic Press, New York, pp 54–85Google Scholar
  30. 30.
    Serova LI, Laukova M, Alaluf LG, Sabban EL (2014) Blockage of melanocortin-4 receptors by intranasal HS014 attenuates single prolonged stress-triggered changes in several brain regions. J Neurochem 131:825–835CrossRefPubMedGoogle Scholar
  31. 31.
    Juven-Wetzler A, Cohen H, Kaplan Z, Kohen A, Porat O, Zohar J (2014) Immediate ketamine treatment does not prevent posttraumatic stress responses in an animal model for PTSD. Eur Neuropsychopharmacol 24:469–479CrossRefPubMedGoogle Scholar
  32. 32.
    Patki G, Li L, Allam F, Solanki N, Dao AT, Alkadhi K, Salim S (2014) Moderate treadmill exercise rescues anxiety and depression-like behavior as well as memory impairment in a rat model of posttraumatic stress disorder. Physiol Behav 130:47–53CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhang Y, Gandhi PR, Standifer KM (2012) Increased nociceptive sensitivity and nociceptin/orphanin FQ levels in a rat model of PTSD. Mol Pain 8:76CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Takahashi T, Morinobu S, Iwamoto Y, Yamawaki S (2006) Effect of paroxetine on enhanced contextual fear induced by single prolonged stress in rats. Psychopharmacology 189:165–173CrossRefPubMedGoogle Scholar
  35. 35.
    Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4:775–790CrossRefPubMedGoogle Scholar
  36. 36.
    Kohda K, Harada K, Kato K, Hoshino A, Motohashi J, Yamaji T, Morinobu S, Matsuoka N, Kato N (2007) Glucocorticoid receptor activation is involved in producing abnormal phenotypes of single-prolonged stress rats: a putative post-traumatic stress disorder model. Neuroscience 148:22–33CrossRefPubMedGoogle Scholar
  37. 37.
    Geracioti TD Jr, Baker DG, Ekhator NN, West SA, Hill KK, Bruce AB, Schmidt D, Rounds-Kugler B, Yehuda R, Keck PE Jr, Kasckow JW (2001) CSF norepinephrine concentrations in posttraumatic stress disorder. Am J Psychiatry 158:1227–1230CrossRefPubMedGoogle Scholar
  38. 38.
    Geracioti TD Jr, Baker DG, Kasckow JW, Strawn JR, Jeffrey Mulchahey J, Dashevsky BA, Horn PS, Ekhator NN (2008) Effects of trauma-related audiovisual stimulation on cerebrospinal fluid norepinephrine and corticotropin-releasing hormone concentrations in post-traumatic stress disorder. Psychoneuroendocrinology 33:416–424CrossRefPubMedGoogle Scholar
  39. 39.
    O’Donnell T, Hegadoren KM, Coupland NC (2004) Noradrenergic mechanisms in the pathophysiology of post-traumatic stress disorder. Neuropsychobiology 50:273–283CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang W, Perry KW, Wong DT, Potts BD, Bao J, Tollefson GD, Bymaster FP (2000) Synergistic effects of olanzapine and other antipsychotic agents in combination with fluoxetine on norepinephrine and dopamine release in rat prefrontal cortex. Neuropsychopharmacology 23:250–262CrossRefPubMedGoogle Scholar
  41. 41.
    Tianzhu Z, Shihai Y, Juan D (2014) Antidepressant-like effects of cordycepin in a mice model of chronic unpredictable mild stress. Evid Based Complement Alternat Med 2014:438506CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Heilig M (2004) The NPY system in stress, anxiety and depression. Neuropeptides 38:213–224 Review CrossRefPubMedGoogle Scholar
  43. 43.
    Wu G, Feder A, Wegener G, Bailey C, Saxena S, Charney D, Mathé AA (2011) Central functions of neuropeptide Y in mood and anxiety disorders. Expert Opin Ther Targets 15:1317–1331CrossRefPubMedGoogle Scholar
  44. 44.
    Cohen H, Liu T, Kozlovsky N, Kaplan Z, Zohar J, Mathé AA (2012) The neuropeptide Y (NPY)-ergic system is associated with behavioral resilience to stress exposure in an animal model of post-traumatic stress disorder. Neuropsychopharmacology 37:350–363CrossRefPubMedGoogle Scholar
  45. 45.
    Cui H, Sakamoto H, Higashi S, Kawata M (2008) Effects of single-prolonged stress on neurons and their afferent inputs in the amygdala. Neuroscience 152:703–712CrossRefPubMedGoogle Scholar
  46. 46.
    Ji MH, Jia M, Zhang MQ, Liu WX, Xie ZC, Wang ZY, Yang JJ (2014) Dexmedetomidine alleviates anxiety-like behaviors and cognitive impairments in a rat model of post-traumatic stress disorder. Behav Brain Funct 10:28–37CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Barnea A, Roberts J (2010) Induction of functional and morphological expression of neuropeptide Y (NPY) in cortical cultures by brain-derived neurotrophic factor (BDNF): evidence for a requirement for extracellular-regulated kinase (ERK)-dependent and ERK-independent mechanisms. Brain Res 919:57–69CrossRefGoogle Scholar
  48. 48.
    Tao W, Wang H, Su Q, Chen Y, Xue W, Xia B, Duan J, Chen G (2016) Paeonol attenuates lipopolysaccharide-induced depressive-like behavior in mice. Psychiatry Res 238:116–121CrossRefPubMedGoogle Scholar
  49. 49.
    Maletic V, Robinson M, Oakes T, Iyengar S, Ball SG, Russell J (2007) Neurobiology of depression: an integrated view of key findings. Int J Clin Pract 61:2030–2040CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Yan WJ, Tan YC, Xu JC, Tang XP, Zhang C, Zhang PB, Ren ZQ (2015) Protective effects of silibinin and its possible mechanism of action in mice exposed to chronic unpredictable mild stress. Biomol Ther 23:245–250CrossRefGoogle Scholar
  51. 51.
    Aykaç A, Aydın B, Cabadak H, Gören MZ (2012) The change in muscarinic receptor subtypes in different brain regions of rats treated with fluoxetine or propranolol in a model of post-traumatic stress disorder. Behav Brain Res 232:124–129CrossRefPubMedGoogle Scholar
  52. 52.
    Bingham BC, Sheela Rani CS, Frazer A, Strong R, Morilak DA (2013) Exogenous prenatal corticosterone exposure mimics the effects of prenatal stress on adult brain stress response systems and fear extinction behavior. Psychoneuroendocrinology 38:2746–2757CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2016

Authors and Affiliations

  • Bombi Lee
    • 1
  • Bongjun Sur
    • 1
  • Mijung Yeom
    • 1
  • Insop Shim
    • 1
    • 2
  • Hyejung Lee
    • 1
  • Dae-Hyun Hahm
    • 1
    • 2
  1. 1.Acupuncture and Meridian Science Research Center, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
  2. 2.The Graduate School of Basic Science of Korean Medicine, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea

Personalised recommendations