Advertisement

Journal of Natural Medicines

, Volume 70, Issue 4, pp 708–720 | Cite as

Medicinal significance of naturally occurring cyclotetrapeptides

  • Muna Ali Abdalla
Review

Abstract

Bioactive natural products are serendipitous drug candidates, which stimulate synthetic approaches for improving and supporting drug discovery and development. Therefore, the search for bioactive metabolites from different natural sources continues to play an important role in fashioning new medicinal agents. Several cyclic peptides were produced by organisms, such as β-defensins, gramicidin S, and tyrocidine A, and exhibited a wide range of bioactivities, such as antiviral activity against HIV-1, influenza A viruses, or antibacterial activity. Cyclic tetrapeptides are a class of natural products that were found to have a broad range of biological activities, promising pharmacokinetic properties, as well as interesting conformational dynamics and ability of slow inter-conversion to several different structures. Cyclooligopeptides, particularly medium ring-sized peptides, were obtained from marine microorganisms and exhibited a wide range of pharmacological properties, including antimicrobial and anti-dinoflagellate activities, cytotoxicity, and inhibitory activity against enzyme sortase B. Most of the naturally occurring cyclotetrapeptides are obtained from fungi. Some natural cyclic tetrapeptides were found to inhibit histone deacetylase (HDAC), which regulate the expression of genes. These compounds are very useful as cancer therapeutics. Various analogues of the natural cyclotetrapeptides were successfully synthesized to find novel lead compounds for pharmacological and biotechnological applications. Therefore, in this review, previously reported novel natural cyclotetrapeptides are briefly discussed, along with their important biological activities as drug candidates, together with their promising therapeutic properties. Moreover, their future perspective in drug discovery as potential therapeutic agents will be determined.

Keywords

Cyclotetrapeptides Microorganisms Therapeutic properties Histone deacetylase inhibitors (HDACis) Bioactivities 

Notes

Acknowledgments

The author is grateful to the German Academic Exchange Service (DAAD) for the PhD grant and Alexander von Humboldt Foundation, Germany, for the Georg Forster Postdoctoral Fellowship.

Compliance with ethical standards

Conflict of interest

The author declares that there are no potential conflicts of interests.

References

  1. 1.
    Cavelier-Frontin F, Pepe G, Verducci J, Siri D, Jacquier R (1992) Prediction of the best linear precursor in the synthesis of cyclotetrapeptides by molecular mechanic calculations. J Am Chem Soc 114:8885–8890CrossRefGoogle Scholar
  2. 2.
    Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2674CrossRefPubMedGoogle Scholar
  3. 3.
    Horton DA, Bourne GT, Smythe ML (2002) Exploring privileged structures: the combinatorial synthesis of cyclic peptides. J Comput Aided Mol Des 16:415–431CrossRefPubMedGoogle Scholar
  4. 4.
    Horton DA, Bourne GT, Smythe ML (2003) The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev 103:893–930CrossRefPubMedGoogle Scholar
  5. 5.
    Fenical W (1993) Chemical studies of marine bacteria: developing a new resource. Chem Rev 93:1673–1683CrossRefGoogle Scholar
  6. 6.
    Yoshida M, Furumai R, Nishiyama M, Komatsu Y, Nishino N, Horinouchi S (2001) Histone deacetylase as a new target for cancer chemotherapy. Cancer Chemother Pharmacol 48:S20–S26CrossRefPubMedGoogle Scholar
  7. 7.
    Miller CP, Singh MM, Rivera-Del Valle N, Manton CA, Chandra J (2011) Therapeutic strategies to enhance the anticancer efficacy of histone deacetylase inhibitors. J Biomed Biotechnol 2011, 514261PubMedPubMedCentralGoogle Scholar
  8. 8.
    Singh TR, Shankar S, Srivastava RK (2005) HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. Oncogene 24:4609–4623CrossRefPubMedGoogle Scholar
  9. 9.
    Wagner JM, Hackanson B, Lübbert M, Jung M (2010) Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenet 1:117–136CrossRefGoogle Scholar
  10. 10.
    Villadsen JS, Kitir B, Wich K, Friis T, Madsen AS, Olsen CA (2014) An azumamide C analogue without the zinc-binding functionality. Med Chem Commun 5:1849–1855CrossRefGoogle Scholar
  11. 11.
    Tiffon CE, Adams JE, van der Fits L, Wen S, Townsend PA, Ganesan A, Hodges E, Vermeer MH, Packham G (2011) The histone deacetylase inhibitors vorinostat and romidepsin downmodulate IL-10 expression in cutaneous T-cell lymphoma cells. Br J Pharmacol 162:1590–1602CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dokmanovic M, Marks PA (2005) Prospects: histone deacetylase inhibitors. J Cell Biochem 96:293–304CrossRefPubMedGoogle Scholar
  13. 13.
    Mwakwari SC, Patil V, Guerrant W, Oyelere AK (2010) Macrocyclic histone deacetylase inhibitors. Curr Top Med Chem 10:1423–1440CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Patil V, Guerrant W, Chen PC, Gryder B, Benicewicz DB, Khan SI, Tekwani BL, Oyelere AK (2010) Antimalarial and antileishmanial activities of histone deacetylase inhibitors with triazole-linked cap group. Bioorg Med Chem 18:415–425CrossRefPubMedGoogle Scholar
  15. 15.
    Blanchard F, Chipoy C (2005) Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases? Drug Discov Today 10:197–204CrossRefPubMedGoogle Scholar
  16. 16.
    Walton JD (2006) HC-toxin. Phytochemistry 67:1406–1413CrossRefPubMedGoogle Scholar
  17. 17.
    Closse A, Huguenin R (1974) Isolation and structural clarification of chlamydocin. Helv Chim Acta 57:533–545CrossRefPubMedGoogle Scholar
  18. 18.
    Bernardi E, Fauchere JL, Atassi G, Viallefont P, Lazaro R (1993) Antitumoral cyclic peptide analogues of chlamydocin. Peptides 14:1091–1093CrossRefPubMedGoogle Scholar
  19. 19.
    Umehara K, Nakahara K, Kiyoto S, Iwami M, Okamoto M, Tanaka H, Kohsaka M, Aoki H, Imanaka H (1983) Studies on WF-3161, a new antitumor antibiotic. J Antibiot 36:478–483CrossRefPubMedGoogle Scholar
  20. 20.
    Itazaki H, Nagashima K, Sugita K, Yoshida H, Kawamura Y, Yasuda Y, Matsumoto K, Ishii K, Uotani N, Nakai H, Terui A (1990) Isolation and structural elucidation of new cyclotetrapeptides, trapoxins A and B, having detransformation activities as antitumor agents. J Antibiot 43:1524–1532CrossRefPubMedGoogle Scholar
  21. 21.
    von Bargen KW, Niehaus EM, Bergander K, Brun R, Tudzynski B, Humpf HU (2013) Structure elucidation and antimalarial activity of apicidin F: an apicidin-like compound produced by Fusarium fujikuroi. J Nat Prod 76:2136–2140CrossRefGoogle Scholar
  22. 22.
    Mori H, Urano Y, Kinoshita T, Yoshimura S, Takase S, Hino M (2003) FR235222, a fungal metabolite, is a novel immunosuppressant that inhibits mammalian histone deacetylase. III. Structure determination. J Antibiot 56:181–185CrossRefPubMedGoogle Scholar
  23. 23.
    Salvador LA, Luesch H (2012) Discovery and mechanism of natural products as modulators of histone acetylation. Curr Drug Targets 13:1029–1047CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gu W, Cueto M, Jensen PR, Fenical W, Silverman RB (2007) Microsporins A and B: new histone deacetylase inhibitors from the marine-derived fungus Microsporum cf. gypseum and the solid-phase synthesis of microsporin A. Tetrahedron 63:6535–6541CrossRefGoogle Scholar
  25. 25.
    Jiang Z, Barret MO, Boyd KG, Adams DR, Boyd AS, Burgess JG (2002) JM47, a cyclic tetrapeptide HC-toxin analogue from a marine Fusarium species. Phytochemistry 60:33–38CrossRefPubMedGoogle Scholar
  26. 26.
    Bräse S, Encinas A, Keck J, Nising CF (2009) Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev 109:3903–3990CrossRefPubMedGoogle Scholar
  27. 27.
    Nakao Y, Yoshida S, Matsunaga S, Shindoh N, Terada Y, Nagai K, Yamashita JK, Ganesan A, van Soest RWM, Fusetani N (2006) Azumamides A–E: histone deacetylase inhibitory cyclic tetrapeptides from the marine sponge Mycale izuensis. Angew Chem Int Ed 45:7553–7557CrossRefGoogle Scholar
  28. 28.
    Maulucci N, Chini MG, Di Micco S, Izzo I, Cafaro E, Russo A, Gallinari P, Paolini C, Nardi MC, Casapullo A, Riccio R, Bifulco G, De Riccardis F (2007) Molecular insights into azumamide e histone deacetylases inhibitory activity. J Am Chem Soc 129:3007–3012CrossRefPubMedGoogle Scholar
  29. 29.
    Sasamura S, Sakamoto K, Takagaki S, Yamada T, Takase S, Mori H, Fujii T, Hino M, Hashimoto M (2010) AS1387392, a novel immunosuppressive cyclic tetrapeptide compound with inhibitory activity against mammalian histone deacetylase. J Antibiot 63:633–636CrossRefPubMedGoogle Scholar
  30. 30.
    Furumai R, Komatsu Y, Nishino N, Khochbin S, Yoshida M, Horinouchi S (2001) Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc Natl Acad Sci U S A 98:87–92CrossRefPubMedGoogle Scholar
  31. 31.
    Kim JS, Lee S, Lee T, Lee YW, Trepel JB (2001) Transcriptional activation of p21(WAF1/CIP1) by apicidin, a novel histone deacetylase inhibitor. Biochem Biophys Res Commun 281:866–871CrossRefPubMedGoogle Scholar
  32. 32.
    Huber K, Doyon G, Plaks J, Fyne E, Mellors JW, Sluis-Cremer N (2011) Inhibitors of histone deacetylases: correlation between isoform specificity and reactivation of HIV type 1 (HIV-1) from latently infected cells. J Biol Chem 286:22211–22218CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    D’Acunto CW, Carratù A, Rodriquez M, Taddei M, Parente L, Petrella A (2010) LGP1, A histone deacetylase inhibitor analogue of FR235222, sensitizes promyelocytic leukaemia U937 cells to TRAIL-mediated apoptosis. Anticancer Res 30:887–894PubMedGoogle Scholar
  34. 34.
    Okuno T, Ishita Y, Sawai K, Matsumoto T (1974) Characterization of alternariolide, a host-specific toxin produced by Alternaria mali Roberts. Chem Lett 3:635–638CrossRefGoogle Scholar
  35. 35.
    Ueno T, Nakashima T, Uemoto M, Fukami H, Lee SN, Izumiya N (1977) Mass spectrometry of Alternaria mali toxins and related cyclodepsipeptides. Biomed Mass Spectrom 4:134–142CrossRefPubMedGoogle Scholar
  36. 36.
    Miyashita M, Nakamori T, Miyagawa H, Akamatsu M, Ueno T (2003) Inhibitory activity of analogs of AM-toxin, a host-specific phytotoxin from the Alternaria alternata apple pathotype, on photosynthetic O2 evolution in apple leaves. Biosci Biotechnol Biochem 67:635–638CrossRefPubMedGoogle Scholar
  37. 37.
    Fulton ND, Bollenbacher K, Templeton GE (1965) A metabolite from Alternaria tenuis that inhibits chlorophyll production. Phytopathology 55:49–51Google Scholar
  38. 38.
    Pinet E, Cavelier F, Verducci J, Girault G, Dubart L, Haraux F, Sigalat C, André F (1996) Synthesis, structure, and properties of MeSer1-tentoxin, a new cyclic tetrapeptide which interacts specifically with chloroplast F1 H+-ATPase differentiation of inhibitory and stimulating effects. Biochemistry 35:12804–12811CrossRefPubMedGoogle Scholar
  39. 39.
    Durbin RD, Uchytil TF (1977) A survey of plant insensitivity to tentoxin. Phytopathology 67:602–603CrossRefGoogle Scholar
  40. 40.
    Loiseau N, Delaforge M, Minoletti C, André F, Garrigues A, Orlowski S, Gomis JM (2001) Structure–activity relationships of cyclotetrapeptides: interaction of tentoxin derivatives with three membrane proteins. Adv Exp Med Biol 500:343–346CrossRefPubMedGoogle Scholar
  41. 41.
    Hong S, Pedersen PL (2008) ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Microbiol Mol Biol Rev 72:590–641CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Duke SO, Vaughn KC (1982) Lack of involvement of polyphenol oxidase in ortho-hydroxylation of phenolic compounds in mung bean seedlings. Physiol Plant 54:381–385CrossRefGoogle Scholar
  43. 43.
    Aracil J-M, Badre A, Fadli M, Jeanty G, Banaigs B, Francisco C, Lafargue F, Heitz A, Aumelas A (1991) Nouveaux cyclotétrapeptides isolés de l’ascidie cystodytes delle chiajei. Tetrahedron Lett 32:2609–2612CrossRefGoogle Scholar
  44. 44.
    Yang L, Tan RX, Wang Q, Huang WY, Yin YX (2002) Antifungal cyclopeptides from Halobacillus litoralis YS3106 of marine origin. Tetrahedron Lett 43:6545–6548CrossRefGoogle Scholar
  45. 45.
    Reddy CM, Murthy VNS, Mukkanti K, Acharyulu PVR (2007) Towards the total synthesis of halolitoralin-C. Indian J Chem 46B:1137–1142Google Scholar
  46. 46.
    Sun Y, Tian L, Huang YF, Sha Y, Pei YH (2006) A new cyclotetrapeptide from marine fungus Trichoderma reesei. Pharmazie 61:809–810Google Scholar
  47. 47.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  48. 48.
    Gao C-H, Chen Y-N, Pan L-X, Lei F, Long B, Hu L-Q, Zhang R-C, Ke K, Huang R-M (2014) Two new cyclic tetrapeptides from deep-sea bacterium Bacillus amyloliquefaciens GAS 00152. J Antibiot 67:541–543CrossRefPubMedGoogle Scholar
  49. 49.
    He F, Bao J, Zhang X-Y, Tu Z-C, Shi Y-M, Qi S-H (2013) Asperterrestide A, a cytotoxic cyclic tetrapeptide from the marine-derived fungus Aspergillus terreus SCSGAF0162. J Nat Prod 76:1182–1186CrossRefPubMedGoogle Scholar
  50. 50.
    Junge W (1987) Complete tracking of transient proton flow through active chloroplast ATP synthase. Proc Natl Acad Sci U S A 84:7084–7088CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Chakraborty S, Tai D-F, Lin Y-C, Chiou T-W (2015) Antitumor and antimicrobial activity of some cyclic tetrapeptides and tripeptides derived from marine bacteria. Mar Drugs 13:3029–3045CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dahiya R, Gautam H (2011) Toward the synthesis and biological screening of a cyclotetrapeptide from marine bacteria. Mar Drugs 9:71–81CrossRefGoogle Scholar
  53. 53.
    Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459CrossRefPubMedGoogle Scholar
  54. 54.
    Piddock LJV (2015) Teixobactin, the first of a new class of antibiotics discovered by iChip technology? J Antimicrob Chemother 70:2679–2680CrossRefPubMedGoogle Scholar
  55. 55.
    Pérez-Victoria I, Martín J, González-Menéndez V, de Pedro N, El Aouad N, Ortiz-López FJ, Tormo JR, Platas G, Vicente F, Bills GF, Genilloud O, Goetz MA, Reyes F (2012) Isolation and structural elucidation of cyclic tetrapeptides from Onychocola sclerotica. J Nat Prod 75:1210–1214CrossRefPubMedGoogle Scholar
  56. 56.
    Mitova M, Popov S, De Rosa S (2004) Cyclic peptides from a Ruegeria strain of bacteria associated with the sponge suberites domuncula. J Nat Prod 67:1178–1181CrossRefPubMedGoogle Scholar
  57. 57.
    Pohl S, Goddard R, Kubik S (2001) A new cyclic tetrapeptide composed of alternating l-proline and 3-aminobenzoic acid subunits. Tetrahedron Lett 42:7555–7558CrossRefGoogle Scholar
  58. 58.
    Kawagishi H, Somoto A, Kuranari J, Kimura A, Chiba S (1993) A novel cyclotetrapeptide produced by Lactobacillus helveticus as a tyrosinase inhibitor. Tetrahedron Lett 34:3439–3440CrossRefGoogle Scholar
  59. 59.
    Rungprom W, Siwu ERO, Lambert LK, Dechsakulwatana C, Barden MC, Kokpol U, Blanchfield JT, Kita M, Garson MJ (2008) Cyclic tetrapeptides from marine bacteria associated with the seaweed Diginea sp. and the sponge Halisarca ectofibrosa. Tetrahedron 64:3147–3152CrossRefGoogle Scholar
  60. 60.
    Shin J, Seo Y, Lee HS, Rho JR, Mo SJ (2003) A new cyclic peptide from a marine-derived bacterium of the genus Nocardiopsis. J Nat Prod 66:883–884CrossRefPubMedGoogle Scholar
  61. 61.
    Mansson M, Gram L, Larsen TO (2011) Production of bioactive secondary metabolites by marine Vibrionaceae. Mar Drugs 9:1440–1468CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Lin Z, Reilly CA, Antemano R, Hughen RW, Marett L, Concepcion GP, Haygood MG, Olivera BM, Light A, Schmidt EW (2011) Nobilamides A–H, long-acting transient receptor potential vanilloid-1 (TRPV1) antagonists from mollusk-associated bacteria. J Med Chem 54:3746–3755CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Yamashita T, Matoba H, Kuranaga T, Inoue M (2014) Total syntheses of nobilamides B and D: application of traceless Staudinger ligation. Tetrahedron 70:7746–7752CrossRefGoogle Scholar
  64. 64.
    Omar S, Tenenbaum L, Manes LV, Crews P (1988) Novel marine sponge derived amino acids 7. The fenestins. Tetrahedron Lett 29:5489–5492CrossRefGoogle Scholar
  65. 65.
    Schmidt U, Lieberknecht A, Kazmaier U, Haslinger E (1990) What are the structures of fenestin A and fenestin B? Angew Chem Int Ed Engl 29:514–515CrossRefGoogle Scholar
  66. 66.
    Yang X, Yang Y, Peng T, Yang F, Zhou H, Zhao L, Xu L, Ding Z (2013) A new cyclopeptide from endophytic Streptomyces sp. YIM 64018. Nat Prod Commun 8:1753–1754PubMedGoogle Scholar
  67. 67.
    Xu HM, Yi H, Zhou WB, He WJ, Zeng GZ, Xu WY, Tan NH (2013) Tataricins A and B, two novel cyclotetrapeptides from Aster tataricus, and their absolute configuration assignment. Tetrahedron Lett 54:1380–1383CrossRefGoogle Scholar
  68. 68.
    Pan JH, Jones EBG, She ZG, Pang JY, Lin YC (2008) Review of bioactive compounds from fungi in the South China Sea. Bot Mar 51:179–190CrossRefGoogle Scholar
  69. 69.
    Yin WQ, Zou JM, She ZG, Vrijmoed LLP, Jones EBG, Lin YC (2005) Two cyclic peptides produced by the endophytic fungus #2221 from Castaniopsis fissa on the South China Sea Coast. Chin Chem Lett 16:219–222Google Scholar
  70. 70.
    Abdalla MA, Matasyoh JC (2014) Endophytes as producers of peptides: an overview about the recently discovered peptides from endophytic microbes. Nat Prod Bioprospect 4:257–270CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Lang G, Blunt JW, Cummings NJ, Cole AL, Munro MH (2005) Hirsutide, a cyclic tetrapeptide from a spider-derived entomopathogenic fungus, Hirsutella sp. J Nat Prod 68:1303–1305CrossRefPubMedGoogle Scholar
  72. 72.
    Zhou H, Yang Y, Yang X, Li W, Xiong Z, Zhao L, Xu L, Ding Z (2014) A new cyclic tetrapeptide from an endophytic Streptomyces sp. YIM67005. Nat Prod Res 28:318–323CrossRefPubMedGoogle Scholar
  73. 73.
    Mitova M, Tommonaro G, De Rosa S (2003) A novel cyclopeptide from a bacterium associated with the marine sponge Ircinia muscarum. Z Naturforsch 58:740–745Google Scholar
  74. 74.
    Abdalla MA (2010) ent-Homoabyssomicins A and B, two new spirotetronates, khatmiamycin, a zoosporicidal naphthoquinone, and further new biologically active secondary metabolites from marine and terrestrial Streptomyces spp. Ph.D. thesis, Georg-August University of Goettingen. Cuvillier Verlag, Germany, 281 ppGoogle Scholar
  75. 75.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25CrossRefGoogle Scholar
  76. 76.
    Hruby VJ, Balse PM (2000) Conformational and topographical considerations in designing agonist peptidomimetics from peptide leads. Curr Med Chem 7:945–970CrossRefPubMedGoogle Scholar
  77. 77.
    Tyndall JDA, Pfeiffer B, Abbenante G, Fairlie DP (2005) Over one hundred peptide-activated G protein-coupled receptors recognize ligands with turn structure. Chem Rev 105:793–826CrossRefPubMedGoogle Scholar
  78. 78.
    Hruby VJ, Agnes RS (1999) Conformation–activity relationships of opioid peptides with selective activities at opioid receptors. Biopolymers 51:391–410CrossRefPubMedGoogle Scholar
  79. 79.
    Gentilucci L, Tolomelli A, Squassabia F (2006) Peptides and peptidomimetics in medicine, surgery and biotechnology. Curr Med Chem 13:2449–2466CrossRefPubMedGoogle Scholar
  80. 80.
    Norgren AS, Büttner F, Prabpai S, Kongsaeree P, Arvidsson PI (2006) β2-Amino acids in the design of conformationally homogeneous cyclo-peptide scaffolds. J Org Chem 71:6814–6821CrossRefPubMedGoogle Scholar
  81. 81.
    Maolanon AR, Villadsen JS, Christensen NJ, Hoeck C, Friis T, Harris P, Gotfredsen CH, Fristrup P, Olsen CA (2014) Methyl effect in azumamides provides insight into histone deacetylase inhibition by macrocycles. J Med Chem 57:9644–9657CrossRefPubMedGoogle Scholar
  82. 82.
    Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E, Berghs SC, Carey N, Finn PW, Collins LS, Tumber A, Ritchie JW, Jensen PB, Lichenstein HS, Sehested M (2008) Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J 409:581–589CrossRefPubMedGoogle Scholar
  83. 83.
    Mottamal M, Zheng S, Huang TL, Wang G (2015) Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 20:3898–3941CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Rodriguez LMDL, Weidkamp AJ, Brimble MA (2015) An update on new methods to synthesize cyclotetrapeptides. Org Biomol Chem 13:6906–6921CrossRefGoogle Scholar
  85. 85.
    White CJ, Yudin AK (2011) Contemporary strategies for peptide macrocyclization. Nat Chem 3:509–524CrossRefPubMedGoogle Scholar
  86. 86.
    Taunton J, Collins JL, Schreiber SL (1996) Synthesis of natural and modified trapoxins, useful reagents for exploring histone deacetylase function. J Am Chem Soc 118:10412–10422CrossRefGoogle Scholar
  87. 87.
    Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Food Science and Technology, Faculty of AgricultureUniversity of KhartoumKhartoum NorthSudan

Personalised recommendations