Journal of Natural Medicines

, Volume 70, Issue 2, pp 217–224 | Cite as

In vitro and in vivo antiherpetic effects of (1R,2R)-1-(5′-methylful-3′-yl)propane-1,2,3-triol

  • Kohei Sasaki
  • Kyoko Hayashi
  • Yuji Matsuya
  • Kenji Sugimoto
  • Jung-Bum Lee
  • Fumiya Kurosaki
  • Toshimitsu Hayashi
Original Paper

Abstract

In this study, we demonstrated the in vitro and in vivo antiherpetic activities of a stable furan derivative, (1R,2R)-1-(5′-methylful-3′-yl)propane-1,2,3-triol (MFPT), which had originally been isolated from Streptomyces sp. strain FV60. In the present study, we synthesized MFPT from (5-methylfuran-3-yl)methanol in 6 steps for use in the experiments. MFPT showed potent in vitro antiviral activities against two acyclovir (ACV)-sensitive (KOS and HF) strains and an ACV-resistant (A4-3) strain of herpes simplex virus type 1 (HSV-1) and an ACV-sensitive HSV type 2 (HSV-2) UW 268 strain, their selectivity indices ranging from 310 to 530. By intravaginal application of MFPT to mice, the virus yields decreased dose-dependently against the three strains of HSV-1 and HSV-2. When MFPT was applied at a dose of 1.0 mg/day, the lesion scores, as clinical signs manifested by viral infection, were extensively suppressed in HSV-1-infected mice, whereas the lesion scores in HSV-2-infected mice were not markedly decreased. Interestingly, MFPT exerted an inhibitory effect against ACV-resistant HSV-1 in mice to a similar degree as in ACV-sensitive HSV-1-infected mice. Therefore, the compound might have potential for developing a topical antiviral agent that could be also applied to the infections caused by ACV-resistant viruses.

Keywords

(1R,2R)-1-(5′-methylful-3′-yl)propane-1,2,3-triol (MFPT) Herpes simplex virus type 1 Herpes simplex virus type 2 Antiherpetic activity Intravaginal application 

References

  1. 1.
    Hofstetter AM, Rosenthal SL, Stanberry LR (2014) Current thinking on genital herpes. Curr Opin Infect Dis 27:75–83. doi:10.1097/QCO.0000000000000029 CrossRefPubMedGoogle Scholar
  2. 2.
    Freeman EE, Weiss HA, Glynn JR, Cross PL, Whitworth JA, Hayes RJ (2006) Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS 20:73–83CrossRefPubMedGoogle Scholar
  3. 3.
    Xu F, Sternberg MR, Kottiri BJ, McQuillan GM, Lee FK, Nahmias AJ, Berman SM, Markowitz LE (2006) Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. JAMA 296:964–973. doi:10.1001/jama.296.8.964 CrossRefPubMedGoogle Scholar
  4. 4.
    Celum C, Wald A, Lingappa JR, Magaret AS, Wang RS, Mugo N, Mujugira A, Baeten JM, Mullins JI, Hughes JP, Bukusi EA, Cohen CR, Katabira E, Ronald A, Kiarie J, Farquhar C, Stewart GJ, Makhema J, Essex M, Were E, Fife KH, de Bruyn G, Gray GE, McIntyre JA, Manongi R, Kapiga S, Coetzee D, Allen S, Inambao M, Kayitenkore K, Karita E, Kanweka W, Delany S, Rees H, Vwalika B, Stevens W, Campbell MS, Thomas KK, Coombs RW, Morrow R, Whittington WLH, McElrath MJ, Barnes L, Ridzon R, Corey L (2010) Acyclovir and transmission of HIV-1 from persons infected with HIV-1 and HSV-2. N Engl J Med 362:427–439. doi:10.1056/NEJMoa0904849 PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Hayashi K, Kawahara K, Nakai C, Sankawa U, Seto H, Hayashi T (2000) Evaluation of (1R,2R)-1-(5′-methylfur-3′-yl)propane-1,2,3-triol, a sphydrofuran derivative isolated from a Streptomyces species, as an anti-herpesvirus drug. J Antimicrob Chemother 46:181–189CrossRefPubMedGoogle Scholar
  6. 6.
    Umezawa S, Usui T, Umezawa H, Tsuchiya T, Takeuchi T (1971) A new microbial metabolite, sphydrofuran. I. Isolation and the structure of a hydrolysis product. J Antibiot (Tokyo) 24:85–92CrossRefGoogle Scholar
  7. 7.
    Sasaki K, Hayashi K, Lee J-B, Kurosaki F, Hayashi T (2015) Characterization of a novel mutation in NS1 protein of influenza A virus induced by a chemical substance for the attenuation of pathogenicity. PLoS One 10:e0121205. doi:10.1371/journal.pone.0121205 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Friedrich M, Wächtler A, de Meijere A (2002) Extending the scope of a known furan synthesis - a novel route to 1,2,4-trisubstituted pyrroles. Synlett 2002:0619–0621. doi:10.1055/s-2002-22707 CrossRefGoogle Scholar
  9. 9.
    Hayashi K, Hayashi T, Otsuka H, Takeda Y (1997) Antiviral activity of 5,6,7-trimethoxyflavone and its potentiation of the antiherpes activity of acyclovir. J Antimicrob Chemother 39:821–824. doi:10.1093/jac/39.6.821 CrossRefPubMedGoogle Scholar
  10. 10.
    Hayashi K, Hayashi T, Tomoda A (2008) Phenoxazine derivatives inactivate human cytomegalovirus, herpes simplex virus-1, and herpes simplex virus-2 in vitro. J Pharmacol Sci 106:369–375. doi:10.1254/jphs.FP0071679 CrossRefPubMedGoogle Scholar
  11. 11.
    Kaushic C, Ashkar AA, Reid LA, Rosenthal KL (2003) Progesterone increases susceptibility and decreases immune responses to genital herpes infection. J Virol 77:4558–4565. doi:10.1128/JVI.77.8.4558-4565.2003 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Yu P, Yang Y, Zhang ZY, Mac TCM, Wong HNC (1997) Total syntheses of sphydrofuran, secosyrins, and syributins. J Org Chem 62:6359–6366. doi:10.1021/jo970476+ CrossRefGoogle Scholar
  13. 13.
    Scriba M, Tatzber F (1981) Pathogenesis of herpes simplex virus infections in guinea pigs. Infect Immun 34:655–661PubMedCentralPubMedGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2016

Authors and Affiliations

  • Kohei Sasaki
    • 1
  • Kyoko Hayashi
    • 2
  • Yuji Matsuya
    • 1
  • Kenji Sugimoto
    • 1
  • Jung-Bum Lee
    • 1
  • Fumiya Kurosaki
    • 1
  • Toshimitsu Hayashi
    • 2
  1. 1.Graduate School of Medicine and Pharmaceutical Sciences for ResearchUniversity of ToyamaToyamaJapan
  2. 2.Research Institute of Life and Health SciencesChubu UniversityKasugaiJapan

Personalised recommendations