Journal of Natural Medicines

, Volume 69, Issue 3, pp 427–431 | Cite as

Melanin biosynthesis inhibitory activity of a compound isolated from young green barley (Hordeum vulgare L.) in B16 melanoma cells

  • Tian Xiao Meng
  • Nobuto Irino
  • Ryuichiro KondoEmail author


In the course to find compounds that inhibit melanin biosynthesis (i.e., whitening agents), we evaluated the effects of the methanol-soluble fraction (i.e., the water-soluble portion of methanol extracts-CHP20P-MeOH eluted fraction) from young green barley leaves on melanin production in B16 melanoma cells. Activity-guided fractionation led to an isolate called tricin (compound 1) as an inhibitory compound of melanin production in B16 melanoma cells. Furthermore, tricin analogs such as tricetin, tricetin trimethyl ether, luteolin, and apigenin were used for analyzing the structure–activity relationships (SAR) of 5,7-dihydroxyflavones studies. Tricin demonstrated stronger inhibitory activity compared to three other compounds. The results suggest that a hydroxyl group at the C-4′ position and methoxy groups at the C-3′,5′ positions of the tricin skeleton may have important roles in this inhibitory activity in B16 melanoma cells. Our results suggest that tricin inhibits melanin biosynthesis with higher efficacy than arbutin, and it could be used as a whitening agent.


Young green barley Melanin inhibition activity Tricin Whitening agent 


  1. 1.
    Kamiyama M, Shibamoto T (2012) Flavonoids with potent antioxidant activity found in young green barley leaves. J Agric Food Chem 60:6260–6267. doi: 10.1021/jf301700j PubMedCrossRefGoogle Scholar
  2. 2.
    Ueyama H, Aotsuka Y, Okawa M, Ogura Y, Ukeguchi M, Hoashi K, Kinjo J (2011) Antioxidant activities of lutonarin isolated from young barley leaves. Nippon Shokuhin Kagaku Kogaku Kaishi 58:170–172. doi: 10.3136/nskkk.58.170 CrossRefGoogle Scholar
  3. 3.
    Koga R, Meng TX, Nakamura E, Miura C, Irino N, Yahara S, Kondo R (2013) Model examination for the effect of treading stress on young green barley (Hordeum vulgare). Am J Plant Sci 4:174–181. doi: 10.4236/ajps.2013.41023 CrossRefGoogle Scholar
  4. 4.
    Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19:16240–16265. doi: 10.3390/molecules191016240 PubMedCrossRefGoogle Scholar
  5. 5.
    Jiao J, Zhang Y, Liu C, Liu J, Wu X, Zhang Y (2007) Separation and purification of tricin from an antioxidant product derived from bamboo leaves. J Agric Food Chem 55:10086–10092. doi: 10.1021/jf0716533 PubMedCrossRefGoogle Scholar
  6. 6.
    Meng TX, Zhang CF, Miyamoto T, Ishikawa H, Shimizu K, Ohga S, Kondo R (2012) The melanin biosynthesis stimulating compounds isolated from the fruiting bodies of Pleurotus citrinopileatus. J Cosmet Dermatol Sci Appl 2:151–157. doi: 10.4236/jcdsa.2012.23030 Google Scholar
  7. 7.
    Harborne JB, Williams CA (1976) Flavonoid patterns in leaves of the gramineae. Biochem Syst Ecol 4:267–280. doi: 10.1016/0305-1978(76)90051-X CrossRefGoogle Scholar
  8. 8.
    Nakano H, Kawada N, Yoshida M, Ono H, Iwaura R, Tonooka T (2011) Isolation and identification of flavonoids accumulated in proanthocyanidin-free barley. J Agric Food Chem 59:9581–9587. doi: 10.1021/jf2019819 PubMedCrossRefGoogle Scholar
  9. 9.
    Kwon YS, Kim EY, Kim WJ, Kim WK, Kim CM (2002) Antioxidant constituents from Setaria viridis. Arch Pharm Res 25:300–305PubMedCrossRefGoogle Scholar
  10. 10.
    Li H, Zhou CX, Pan Y, Gao X, Wu X, Bai H, Zhou L, Chen Z, Zhang S, Shi S, Luo J, Xu J, Chen L, Zheng X, Zhao Y (2005) Evaluation of antiviral activity of compounds isolated from Ranunculus sieboldii and Ranunculus sceleratus. Planta Med 71:1128–1133. doi: 10.1055/s-2005-873169 PubMedCrossRefGoogle Scholar
  11. 11.
    Hudson EA, Dinh PA, Kokubun T, Simmonds MSJ, Gescher A (2000) Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol Biomarkers Prev 9:1163–1170PubMedGoogle Scholar
  12. 12.
    Ninomiya M, Nishida K, Tanaka K, Watanabe K, Koketsu M (2013) Structure–activity relationship studies of 5,7-dihydroxyflavones as naturally occurring inhibitors of cell proliferation in human leukemia HL-60 cells. J Nat Med 67:460–467. doi: 10.1007/s11418-012-0697-0 PubMedCrossRefGoogle Scholar
  13. 13.
    Walle T, Ta N, Kawamori T, Wen X, Tsuji PA, Walle UK (2007) Cancer chemopreventive properties of orally bioavailable flavonoids—methylated versus unmethylated flavones. Biochem Pharmacol 73:1288–1296. doi: 10.1016/j.bcp.2006.12.028 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Mu Y, Li L, Hu SQ (2013) Molecular inhibitory mechanism of tricin on tyrosinase. Spectrochim Acta A Mol Biomol Spectrosc 107:235–240. doi: 10.1016/j.saa.2013.01.058 PubMedCrossRefGoogle Scholar
  15. 15.
    Arung ET, Shimizu K, Kondo R (2006) Inhibitory effect of artocarpanone from Artocarpus heterophyllus on melanin biosynthesis. Biol Pharm Bull 29:1966–1969PubMedCrossRefGoogle Scholar
  16. 16.
    Verschoyle RD, Greaves P, Cai H, Borkhardt A, Broggini M, D’Incalci M, Riccio E, Doppalapudi R, Kapetanovic IM, Steward WP, Gescher AJ (2006) Preliminary safety evaluation of the putative cancer chemopreventive agent tricin, a naturally occurring flavone. Cancer Chemother Pharmacol 57:1–6. doi: 10.1007/s00280-005-0039-y PubMedCrossRefGoogle Scholar
  17. 17.
    Oyama T, Yasui Y, Sugie S, Koketsu M, Watanabe K, Tanaka T (2009) Dietary tricin suppresses inflammation-related colon carcinogenesis in male Crj: CD-1 mice. Cancer Prev Res (Phila) 2:1031–1038. doi: 10.1158/1940-6207.CAPR-09-0061 CrossRefGoogle Scholar
  18. 18.
    Landis-Piwowar KR, Milacic V, Dou QP (2008) Relationship between the methylation status of dietary flavonoids and their growth-inhibitory and apoptosis-inducing activities in human cancer cells. J Cell Biochem 105:514–523. doi: 10.1002/jcb.21853 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Anderson JA, Perkin AG (1931) CCCLXV.—The yellow colouring matter of Khapli wheat, Triticum dicoccum. I. J Chem Soc 1:2624–2625. doi: 10.1039/JR9310002624 CrossRefGoogle Scholar
  20. 20.
    Zhou JM, Ibrahim RK (2010) Tricin—a potential multifunctional nutraceutical. Phytochem Rev 9:413–424. doi: 10.1007/s11101-009-9161-5 CrossRefGoogle Scholar
  21. 21.
    Zhang XQ, Jiang WW, Wang Y, Li YL, Ye WC (2008) A new phenylpropanoic acid derivatives from the roots of Ficus stenophylla. Yao Xue Xue Bao 43:281–283PubMedGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2015

Authors and Affiliations

  • Tian Xiao Meng
    • 1
  • Nobuto Irino
    • 2
  • Ryuichiro Kondo
    • 1
    Email author
  1. 1.Faculty of AgricultureKyushu UniversityFukuokaJapan
  2. 2.Asahi Ryokuken Co., Ltd.FukuokaJapan

Personalised recommendations