Journal of Natural Medicines

, Volume 68, Issue 1, pp 215–219 | Cite as

Variabines A and B: new β-carboline alkaloids from the marine sponge Luffariella variabilis

  • Eriko Sakai
  • Hikaru Kato
  • Henki Rotinsulu
  • Fitje Losung
  • Remy E. P. Mangindaan
  • Nicole J. de Voogd
  • Hideyoshi Yokosawa
  • Sachiko Tsukamoto


Two new β-carboline alkaloids, variabines A (1) and B (2), were isolated from the Indonesian marine sponge Luffariella variabilis. Their structures were elucidated from spectral data, and 1 was found to be a sulfonated derivative of 2. Although numerous β-carboline alkaloids have been isolated from natural sources to date, 1 is the first β-carboline derivative containing a sulfate group. Compound 2 inhibited chymotrypsin-like activity of the proteasome and Ubc13 (E2)–Uev1A interaction with IC50 values of 4 and 5 μg/mL, respectively, whereas 1 had little effect on the activity or interaction.


β-Carboline alkaloid Sulfate Marine sponge Luffariella variabilis 



We thank Prof. M. Namikoshi and Dr. K. Ukai of Tohoku Pharmaceutical University and Dr. H. Kobayashi of the University of Tokyo for collection of the sponge. This work was supported by Grants-in-aid for Scientific Research (Nos. 22310138 and 22406001) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and also by grants from the Naito Foundation, the Astellas Foundation for Research on Metabolic Disorders, and the Uehara Memorial Foundation.


  1. 1.
    Adams J (2003) Potential for proteasome inhibition in the treatment of cancer. Drug Discov Today 8:307–315PubMedCrossRefGoogle Scholar
  2. 2.
    Thompson JL (2013) Carfilzomib: a second-generation proteasome inhibitor for the treatment of relapsed and refractory multiple myeloma. Ann Pharmacother 47:56–62PubMedCrossRefGoogle Scholar
  3. 3.
    Glickman MH, Ciechanover A (2002) The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428PubMedGoogle Scholar
  4. 4.
    Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513PubMedCrossRefGoogle Scholar
  5. 5.
    Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE (2011) Ubiquitin-like protein conjugation and the ubiquitin–proteasome system as drug targets. Nat Rev Drug Discov 10:29–46PubMedCrossRefGoogle Scholar
  6. 6.
    Cohen P, Tcherpakov M (2010) Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 143:686–693PubMedCrossRefGoogle Scholar
  7. 7.
    Tsukamoto S, Yokosawa H (2010) Inhibition of the ubiquitin-proteasome system by natural products for cancer therapy. Planta Med 76:1064–1074PubMedCrossRefGoogle Scholar
  8. 8.
    Tsukamoto S, Hirota H, Imachi M, Fujimuro M, Onuki H, Ohta T, Yokosawa H (2005) Himeic acid A: a new ubiquitin-activating enzyme inhibitor isolated from a marine-derived fungus, Aspergillus sp. Bioorg Med Chem Lett 15:191–194PubMedCrossRefGoogle Scholar
  9. 9.
    Tsukamoto S, Yamanokuchi R, Yoshitomi M, Sato K, Ikeda T, Rotinsulu H, Mangindaan REP, de Voogd NJ, van Soest RWM, Yokosawa H (2010) Aaptamine, an alkaloid from the sponge Aaptos suberitoides, functions as a proteasome inhibitor. Bioorg Med Chem Lett 20:3341–3343PubMedCrossRefGoogle Scholar
  10. 10.
    Yamanokuchi R, Imada K, Miyazaki M, Kato H, Watanabe T, Fujimuro M, Saeki Y, Yoshinaga S, Terasawa H, Iwasaki N, Rotinsulu H, Losung F, Mangindaan REP, Namikoshi M, de Voogd NJ, Yokosawa H, Tsukamoto S (2012) Hirtioreticulines A-E, indole alkaloids inhibiting the ubiquitin-activating enzyme, from the marine sponge Hyrtios reticulatus. Bioorg Med Chem 20:4437–4442PubMedCrossRefGoogle Scholar
  11. 11.
    Ushiyama S, Umaoka H, Kato H, Suwa Y, Morioka H, Rotinsulu H, Losung F, Mangindaan REP, de Voogd NJ, Yokosawa H, Tsukamoto S (2012) Manadosterols A and B, sulfonated sterol dimers inhibiting Ubc13-Uev1A interaction, isolated from the marine sponge Lissodendryx fibrosa. J Nat Prod 75:1495–1499PubMedCrossRefGoogle Scholar
  12. 12.
    Nakamura Y, Kato H, Nishikawa T, Iwasaki N, Suwa Y, Rotinsulu H, Losung F, Maarisit W, Mangindaan REP, Morioka H, Yokosawa H, Tsukamoto S (2013) Siladenoserinols A-L: new sulfonated serinol derivatives from a tunicate as inhibitors of p53-Hdm2 interaction. Org Lett 15:322–325PubMedCrossRefGoogle Scholar
  13. 13.
    Laine A, Topisirovic I, Zhai D, Reed JC, Borden KLB, Ronai Z (2006) Regulation of p53 localization and activity by Ubc13. Mol Cell Biol 26:8901–8913PubMedCrossRefGoogle Scholar
  14. 14.
    Topisirovic I, Gutierrez GJ, Chen M, Appella E, Borden KLB, Ronai ZA (2009) Control of p53 multimerization by Ubc13 is JNK-regulated. Proc Natl Acad Sci U S A 106:12676–12681PubMedCrossRefGoogle Scholar
  15. 15.
    Gulavita NK, Wright AE, McCarthy PJ, Pomponi SA, Kelly-Borges M, Chin M, Sills MA (1993) Isolation and structure elucidation of 34-sulfatobastadin 13, an inhibitor of the endothelin A receptor, from a marine sponge of the genus Ianthella. J Nat Prod 56:1613–1617PubMedCrossRefGoogle Scholar
  16. 16.
    Sato A, Morishita T, Shiraki T, Yoshioka S, Horikoshi H, Kuwano H, Hanzawa H, Hata T (1993) Aldose reductase inhibitors from a marine sponge, Dictyodendrilla sp. J Org Chem 58:7632–7634CrossRefGoogle Scholar
  17. 17.
    Cain M, Weber RW, Guzman F, Cook JM, Barker SA, Rice KC, Crawley JN, Paul SM, Skolnick P (1982) β-Carbolines: synthesis and neurochemical and pharmacologicalactions on brain benzodiazepine receptors. J Med Chem 25:1081–1091PubMedCrossRefGoogle Scholar
  18. 18.
    de Silva ED, Scheuer PJ (1980) Manoalide, an antibiotic sesterterpenoid from the marine sponge Luffariella variabilis (polejaeff). Tetrahedron Lett 21:1611–1614CrossRefGoogle Scholar
  19. 19.
    Glaser KB, Jacobs RS (1986) Molecular pharmacology of manoalide. Inactivation of bee venom phospholipase A2. Biochem Pharmacol 35:449–453PubMedCrossRefGoogle Scholar
  20. 20.
    Glaser KB, de Carvalho MS, Jacobs RS, Kernan MR, Faulkner DJ (1989) Manoalide: structure-activity studies and definition of the pharmacophore for phospholipase A2 inactivation. Mol Pharmacol 36:782–788PubMedGoogle Scholar
  21. 21.
    de Silva ED, Scheuer PJ (1981) Three new sesterterpenoid antibiotics from the marine sponge Luffariella variabilis (polejaff). Tetrahedron Lett 22:3147–3150CrossRefGoogle Scholar
  22. 22.
    Kernan MR, Faulkner DJ, Jacobs RS (1987) The luffariellins, novel antiinflammatory sesterterpenes of chemotaxonomic importance from the marine sponge Luffariella variabilis. J Org Chem 52:3081–3083CrossRefGoogle Scholar
  23. 23.
    Potts BCM, Capon RJ, Faulkner DJ (1992) Luffalactone and (4E,6E)-dehydromanoalide from the sponge Luffariella variabilis. J Org Chem 57:2965–2967CrossRefGoogle Scholar
  24. 24.
    König GM, Wright AD, Sticher O (1992) Four new antibacterial sesterterpenes from a marine sponge of the genus Luffariella. J Nat Prod 55:174–178PubMedCrossRefGoogle Scholar
  25. 25.
    Ettinger-Epstein P, Motti CA, de Nys R, Wright AD, Battershill CN, Tapiolas DM (2007) Acetylated sesterterpenes from the Great Barrier Reef sponge Luffariella variabilis. J Nat Prod 70:648–651PubMedCrossRefGoogle Scholar
  26. 26.
    Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2013) Marine natural products. Nat Prod Rep 30:237–323PubMedCrossRefGoogle Scholar
  27. 27.
    Tsukamoto S, Takeuchi T, Rotinsulu H, Mangindaan REP, van Soest RWM, Ukai K, Kobayashi H, Namikoshi M, Ohta T, Yokosawa H (2008) Leucettamol A: a new inhibitor of Ubc13-Uev1A interaction isolated from a marine sponge, Leucetta aff. microrhaphis. Bioorg Med Chem Lett 18:6319–6320PubMedCrossRefGoogle Scholar
  28. 28.
    Takeuchi T, Yokosawa H (2005) ISG15 modification of Ubc13 suppresses its ubiquitin-conjugating activity. Biochem Biophys Res Commun 336:9–13PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2013

Authors and Affiliations

  • Eriko Sakai
    • 1
  • Hikaru Kato
    • 1
  • Henki Rotinsulu
    • 2
  • Fitje Losung
    • 3
  • Remy E. P. Mangindaan
    • 3
  • Nicole J. de Voogd
    • 4
  • Hideyoshi Yokosawa
    • 5
  • Sachiko Tsukamoto
    • 1
  1. 1.Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
  2. 2.Faculty of AgricultureUniversitas Pembangunan IndonesiaManadoIndonesia
  3. 3.Faculty of Fisheries and Marine ScienceSam Ratulangi UniversityManadoIndonesia
  4. 4.Netherlands Centre for Biodiversity NaturalisLeidenThe Netherlands
  5. 5.School of PharmacyAichi Gakuin UniversityNagoyaJapan

Personalised recommendations