Journal of Natural Medicines

, Volume 68, Issue 2, pp 274–283

Cognitive enhancement in aged mice after chronic administration of Cedrus deodara Loud. and Pinus roxburghii Sarg. with demonstrated antioxidant properties

  • Amrendra Kumar Chaudhary
  • Shamim Ahmad
  • Avijit Mazumder
Original Paper

Abstract

Cedrus deodara and Pinus roxburghii, plants mentioned in Indian literature, have been described to possess central nervous system effects and are used in Ayurvedic medicine to treat disorders of the mind. To investigate the memory-enhancing activity of volatile oil and chloroform extracts of C. deodara and P. roxburghii in the Morris water maze paradigm as well as evaluating their antioxidant properties. Aged albino mice were used to study the effect of oil and chloroform extracts on learning and memory by using the Morris water maze paradigm. The chloroform extract of C. deodara produced a significant decrease in escape latency over 7 days of training in both reference and working memory training in comparison to the control group. In the probe trial on day 8, mice in the chloroform extract of C. deodara group crossed the target area more often and spent more time in the target quadrant. Amongst the oils and extracts tested for oxidative stress parameters, only the chloroform extract of C. deodara at doses of 100 mg/kg produced a significant decrease in malondialdehyde (MDA) with a simultaneous significant increase in the level of glutathione (GSH) in both the frontal cortex and hippocampus. The present findings indicate that the chloroform extract of C. deodara has the best memory-enhancing effect due to its strong antioxidant properties from compounds like terpenoids and flavonoids. The study provides a scientific rationale for the traditional use of C. deodara in the management of memory dysfunction and related disorders.

Keywords

Cedrus deodara Pinus roxburghii Learning Memory Morris water maze Oxidative stress 

References

  1. 1.
    Cantuti CI, Shukitt-Hale B, Joseph JA (2000) Neurobehavioural aspects of antioxidants in aging. Int J Dev Neurosci 18(4–5):367–381CrossRefGoogle Scholar
  2. 2.
    Shah R (2006) Description of Pinus roxburghii Sarg. Nature’s Medicinal Plants of Uttaranchal. 1:18–19Google Scholar
  3. 3.
    Hussain M, Shah GM, Khan MA (2006) Traditional medicinal and economic uses of gymnosperms of Kaghan Valley, Pakistan. Ethnobot Leafl 10:72–81Google Scholar
  4. 4.
    Kunwar RM, Uprety Y, Burlakoti C, Chowdhary CL, Bussmann RW (2009) Indigenous use and ethnopharmacology of medicinal plants in Far-west Nepal. J Plant People Applied Res 7:005–028Google Scholar
  5. 5.
    Agarwal PK, Rastogi RP (1981) Terpenoids from Cedrus deodara. J Ethnopharmacol 20(6):1391–1421Google Scholar
  6. 6.
    Kirtikar KR, Basu BD (1991) Indian medical plants. In: Blaster E, Caius JF, Bhaskar KS (eds) Periodical Experts Book Agency, New DelhiGoogle Scholar
  7. 7.
    Nadkarni KM, Nadkarni AK, editors (1996). Indian Materia Medica. Bombay Popular PrakashanGoogle Scholar
  8. 8.
    Shinde UA, Phadke AS, Nair AM, Mungantiwar AA, Dikshit VJ, Saraf MN (1999) Membrane stabilizing activity: a possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia 70:251–257CrossRefGoogle Scholar
  9. 9.
    Saxena AK, Singh J, Bhushan S (2010) Natural antioxidants synergistically enhance the anticancer potential of AP9-cd, a novel lignan composition from Cedrus deodara in human leukemia HL-60 cells. Chemico-Biol Interact 188:580–590CrossRefGoogle Scholar
  10. 10.
    Viswanatha GL, Kumar KN, Shylaja H, Ramesh C, Rajesh S, Srinath R (2009) Anxiolytic and anticonvulsant activity of alcoholic extract of heart wood of Cedrus deodara Roxb. in rodents. J Pharm Res Health Care 1(2):217–239Google Scholar
  11. 11.
    Shivanand P, Viral D, Goyani M, Vaghani S, Jaganathan K (2009) Formulation and evaluation of Cedrus deodara Loud. extract. Int J Chem Tech Res 1(4):1145–1152Google Scholar
  12. 12.
    Shinde UA, Phadke AS, Nair AM, Mungantiwar AA, Dikshit VJ, Saraf MN (1999) Preliminary studies on the immunomodulatory activity of Cedrus deodara wood oil. Fitoterapia 70:333–339CrossRefGoogle Scholar
  13. 13.
    Singh SK, Shanmugavel M, Kampasi H, Singh R, Mondhe DM, Rao JM et al (2007) Chemically standardized isolates from Cedrus deodara stem wood having anticancer activity. Planta Med 73:519–526PubMedCrossRefGoogle Scholar
  14. 14.
    Rao JM, Srinivas PV, Yadav JS, Raghavan KV, Saxena AK, Shanmugavel M, Kampasi H, Qazi GN (2003) Herbal chemical composition for the treatment of cancer. US Patent 6:649–650Google Scholar
  15. 15.
    Singh SK, Shanmugavel M, Kampasi H, Singh R, Mondhe DM, Rao JM, Adwankar MK, Saxena AK, Qazi GN (2007) Chemically standardized isolates from Cedrus deodara stem wood having anticancer activity. Planta Med 73:519–526PubMedCrossRefGoogle Scholar
  16. 16.
    Shankaranarayan R, Krishnappa S, Bisarya SC, Dev S (1977) Studies in sesquiterpenes-LIII: deodarone and atlantolone, new sesquiterpenoids from the wood of Cedrus deodara Loud. Tetrahedron 33:1201–1205CrossRefGoogle Scholar
  17. 17.
    Agrawal PK, Agarwal SK, Rasgi RP (1980) Dihydroflavonoids from Cedrus deodara. Phytochemistry 19:893–896CrossRefGoogle Scholar
  18. 18.
    Chopra RN, Nayar SL, Chopra IC (1986) Glossary of Indian medicinal plants (including supplement). Council of Scientific and Industrial Research, New DelhiGoogle Scholar
  19. 19.
    Bajracharya MB (1979) Ayurvedic medicinal plants and general treatments. Jore Ganesh Press Pvt Ltd, KathmanduGoogle Scholar
  20. 20.
    Dash VB, Gupta KK (1994) Materia medica of Ayurveda. B. Jain Publishers, New DelhiGoogle Scholar
  21. 21.
    Uniyal SK, Singh KN, Jamwal P, Lal B (2006) Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya. J Ethnobiol Ethnomed 2:14PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Puri A, Srivastava AK, Singhal B, Mishra SK, Srivastava S, Lakshmi V (2011) Antidyslipidemic and antioxidant activity of Pinus roxburghii needles. Med Chem Res 20(9):1589–1593CrossRefGoogle Scholar
  23. 23.
    Kaushik D, Kumarm A, Kaushik P, Rana AC (2012) Analgesic and anti-inflammatory activity of Pinus roxburghii Sarg. Adv Pharmacol Sci. doi:10.1155/2012/245431
  24. 24.
    Nemova EP, Smolnikova NM, Tanirbergenov TB, Durnev AD (2007) Studies on reproductive toxicity of Rumalaya. Pharm Chem J 41:399–402CrossRefGoogle Scholar
  25. 25.
    Khan I, Singh V, Chaudhary AK (2012) Hepatoprotective activity of Pinus roxburghii Sarg. wood oil against carbon tetrachloride and ethanol induced hepatotoxicity. Bangladesh J Pharmacol 7:94–99Google Scholar
  26. 26.
    Chaudhary AK, Ahmad S, Mazumder A (2012) Study of antibacterial and antifungal activity of traditional Cedrus deodara and Pinus roxburghii Sarg. TANG Int J Genuine Tradit Med 2(4):1–4Google Scholar
  27. 27.
    Maimoona A, Naeem I, Saddiqe Z, Ali N (2011) Analysis of total flavonoids and phenolics in different fractions of bark and needle extracts of Pinus roxburghii and Pinus wallichiana. J Med Plant Res 5(21):5216–5220Google Scholar
  28. 28.
    Zafar I, Fatima A, Khan SJ, Rehman Z, Mehmud S (2010) GC-MS studies of needles essential oil of Pinus roxburghii and their antimicrobial activity from Pakistan. Elec J Environ Agric Food Chem 9(3):468–473Google Scholar
  29. 29.
    Handa SS, Khanuja SP, Longo G, Rakesh DD (2008) Extraction technologies for medicinal and aromatic plants. International Centre for Science and High Technology, Trieste, pp 42–44Google Scholar
  30. 30.
    Khandelwal KR (2004) Practical pharmacognosy, Eleventh edn. Nirali Prakashan, Pune, pp 149–156Google Scholar
  31. 31.
    Wagner H, Bladt S, Zgainski EM (1984) Plant drug analysis––A thin layer chromatography atlas. Springer/Berlin/Heidelberg/New York pp 192–218Google Scholar
  32. 32.
    Morris R (1984) Developments of water-maze procedure for studying spatial learning in rats. J Neurosci Meth 11:47–60CrossRefGoogle Scholar
  33. 33.
    Davoodi FG, Motamedi F, Naghdi N, Akbari E (2009) Effects of reversible inactivation of the reuniens nucleus on spatial learning and memory in rats using Morris water maze task. Behav Brain Res 2:130–135CrossRefGoogle Scholar
  34. 34.
    Rubio J, Dang H, Gong M, Liu X, Chen SL, Gonzales GF (2007) Aqueous and hydro alcoholic extracts of Black Maca (Lepidium meyenii) improve scopolamine-induced memory impairment in mice. Food Chem Toxicol 45:1882–1890PubMedCrossRefGoogle Scholar
  35. 35.
    Jainkang L, Rei E, Hideaki K, Akitane M (1990) Antioxidant action of guilingi in the brain of rats with FeCl3 induced epilepsy. Free Radical Biol Med 9:451–454CrossRefGoogle Scholar
  36. 36.
    Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77PubMedCrossRefGoogle Scholar
  37. 37.
    Glowinski J, Iversen LL (1966) Regional studies of catecholamine in rat brain. J Neurochem 13:655–659PubMedCrossRefGoogle Scholar
  38. 38.
    Lowry H, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  39. 39.
    Parle M, Dhingra D, Kulkarni SK (2004) Neurochemical basis of learning and memory. Indian J Pharm Sci 66:371–376Google Scholar
  40. 40.
    Parle M, Dhingra D, Kulkarni SK (2004) Neuromodulator of learning and memory. Asia Pac J Pharmacol 16:89–99Google Scholar
  41. 41.
    Rudi DH, Peter P, Deyn D (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Rev 36:60–90CrossRefGoogle Scholar
  42. 42.
    Coyle JT, Puttfarcven P (1993) Oxidative stress, glutamate and neurodegenerative disorder. Science 262:89–695CrossRefGoogle Scholar
  43. 43.
    Bast A, Haenen GR, Doelman GJ (1991) Oxidants and antioxidants: state of art. Am J Med 91:23–28CrossRefGoogle Scholar
  44. 44.
    Christen Y (2000) Oxidative stress and Alzheimer’s disease. Am J Clin Med 71(2):621S–629SGoogle Scholar
  45. 45.
    Sastre J, Pastardo FV, Vina J (2000) Mitochondria, oxidative stress and aging. Free Radical Res 32(3):189–198CrossRefGoogle Scholar
  46. 46.
    Bhatacharya SK, Satyan KS, Ghosal S (1996) Antioxidant activity of glycowithanolides from Withania Somnifera. Indian J Exp Biol 35:236–239Google Scholar
  47. 47.
    Schulz JB, Linderau J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 276(16):4904–4911CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2013

Authors and Affiliations

  • Amrendra Kumar Chaudhary
    • 1
    • 2
  • Shamim Ahmad
    • 3
  • Avijit Mazumder
    • 4
  1. 1.Uttarakhand Technical UniversityDehradunIndia
  2. 2.Kharvel Subharti College of PharmacyS.V. Subharti UniversityMeerutIndia
  3. 3.Translam Institute of Pharmaceutical Education and ResearchMeerutIndia
  4. 4.Noida Institute of Engineering & TechnologyGreater NoidaIndia

Personalised recommendations