Journal of Natural Medicines

, Volume 67, Issue 3, pp 492–502 | Cite as

Gastroprotective activity of the ethanolic extract and hexane phase of Combretum duarteanum Cambess. (Combretaceae)

  • Gedson Rodrigues de Morais Lima
  • Camila de Albuquerque Montenegro
  • Heloina de Sousa Falcão
  • Neyres Zínea Taveira de Jesus
  • Analúcia Guedes Silveira Cabral
  • Isis Fernandes Gomes
  • Maria de Fátima Agra
  • Josean Fechine Tavares
  • Leônia Maria Batista
Original Paper


Combretum duarteanum Cambess. is found in South America, particularly in Bolivia, Paraguay, and Brazil. In Paraiba state (Brazil), the species usually occurs in the Caatinga biome. It is popularly known as mofumbo, cipiúba, or cipaúba. This work aims to evaluate the gastroprotective activity and the cytoprotective mechanisms of the ethanolic extract (Cd-EtOHE) and hexane phase (Cd-HexP) obtained from the leaves of C. duarteanum. Doses at 62.5, 125, 250, and 500 mg/kg of Cd-EtOHE and Cd-HexP were tested in models of gastric ulcers induced by HCl/ethanol, absolute ethanol, stress, non-steroidal anti-inflammatory drugs, and pylorus ligation in male rats or mice. Cd-EtOHE and Cd-HexP significantly reduced gastric injuries induced in all models. Cd-EtOHE and Cd-HexP did not alter gastric juice parameters such as pH, [H+], or volume after pylorus ligation. Cytoprotective mechanisms of Cd-EtOHE and Cd-HexP in relation to mucus, nitric oxide (NO), and sulfhydryl (SH) groups were evaluated. Neither product increased the mucus, and they both showed dependence on NO and SH groups to prevent gastric ulcer. Both Cd-EtOHE and Cd-HexP demonstrated gastroprotective activity.


Medicinal plants Combretum duarteanum Gastric ulcer Gastroprotective activity Cytoprotection 



We are grateful to José Crispim Duarte, Cynthia Almeida, and Thiago Leite for technical support. This work was supported by CAPES and CNPQ.


  1. 1.
    Laine L, Takeuchi K, Tarnawski A (2008) Gastric mucosal defense and cytoprotection: bench to bedside. Gastroenterology 135:41–60PubMedCrossRefGoogle Scholar
  2. 2.
    Andrade SF, Antoniolli D, Comunello E, Cardoso LGV, Carvalho JCT, Bastos JK (2006) Antiulcerogenic activity of crude extract, fractions and populnoic acid isolated from Austroplenckia populnea (Celastraceae). Z Naturforsch C 61:329–333PubMedGoogle Scholar
  3. 3.
    Ishikawa T, Donatini RS, Diaz IEC, Yoshida M, Bacchi EM, Kato ETM (2008) Evaluation of gastroprotective activity of Plinia edulis (Vell.) Sobral (Mytaceae) leaves in rats. J Ethnopharmacol 118:527–529PubMedCrossRefGoogle Scholar
  4. 4.
    Klein LC Jr, Gandolfi RB, Santin JR, Lemos M, Cechinel Filho V, Andrade SF (2010) Antiulcerogenic activity of extract, fractions, and some compounds obtained from Polygala cyparissias St. Hillaire & Moquin (Poligalaceae). Naunym-Schmiedberg’s Arch Pharmacol 381:121–126CrossRefGoogle Scholar
  5. 5.
    Konturek SJ, Konturek PC, Brzozowski T (2005) Prostaglandins and ulcer healing. J Physiol Pharmacol 56:5–31Google Scholar
  6. 6.
    Vonkeman HE, Klok RM, Postma MJ, Brouwers JR, Van de Laar MA (2007) Direct medical costs of serious gastrointestinal ulcers among users of NSAIDs. Drugs Aging 24:681–690PubMedCrossRefGoogle Scholar
  7. 7.
    Hoogerwerf WA, Pasricha PJ (2001) Agents used for control of gastric acidity and treatment of peptic ulcers and gastroesophageal reflux disease. In: Hardman JG, Limbird LE, Goodman Gilaman A (eds) The pharmacological basis of therapeutics, 10 edn. Mc Graw-Hill, New York, pp 1005–1019Google Scholar
  8. 8.
    Valle DL (2005) Peptic ulcer diseases and related disorders. In: Braunwald E, Fauci AS, Kasper DL, Hauser SL, Longo DL, Jameson JL (eds) Harrison’s principles of internal medicine, vol 16. McGraw-Hill, New York, pp 1746–1762Google Scholar
  9. 9.
    Bighetti AE, Antônio MA, Kohn LK, Rehder VLG, Foglio MA, Possenti A, Vilela L, Carvalho JE (2005) Antiulcerogenic activity of a crude hydroalcoholic extract and coumarin isolated from Mikania laevigata Schultz Bip. Phytomedicine 12:72–77PubMedCrossRefGoogle Scholar
  10. 10.
    Lakshimi V, Singh N, Shrivastva S, Mishra SK, Dharmani P, Mishra V, Palit G (2010) Gedunian and photogedunin of Xilocarpus granatum show significant antisecretory effects and protect the gastric mucosa of peptic ulcer in rats. Phytomedicine 17:569–574CrossRefGoogle Scholar
  11. 11.
    Jain KS, Shah AK, Bariwal J, Shelke SM, Kale AP, Jagtapc JR, Bhosale AV (2007) Recent advances in proton pump inhibitors and management of acid-peptic disorders. Bioorg Med Chem 15:1181–1205PubMedCrossRefGoogle Scholar
  12. 12.
    Arun M, Asha VV (2008) Gastroprotective effect of Dodonaea viscosa on various experimental ulcer models. J Ethnopharmacol 118:460–465PubMedCrossRefGoogle Scholar
  13. 13.
    Borrelli F, Izzo AA (2000) The plant kingdom as a source of anti-ulcer remedies. Phytother Res 14:581–591PubMedCrossRefGoogle Scholar
  14. 14.
    Calvo TR, Lima ZP, Silva JS, Ballesteros KV, Pellizzon CH, Hiruma-Lima CA, Tamashiro J, Brito AR, Takahira RK, Vilegas W (2007) Constituents and antiulcer effect of Alchornea glandulosa: activation of cell proliferation in gastric mucosa during the healing process. Biol Pharm Bull 30:451–459PubMedCrossRefGoogle Scholar
  15. 15.
    Vasconcelos PCP, Kushima H, Andreo M, Hiruma-Lima CA, Vilegas W, Takahira RK, Pellizzon CH (2008) Studies of gastric mucosa regeneration and safety promoted by Mouriri pusa treatment in acetic acid ulcer model. J Ethnopharmacol 115:293–301PubMedCrossRefGoogle Scholar
  16. 16.
    Silva NCB, Esquibel MA, Alves IM, Velozo ES, Almeida MZ, Santos JES, Campos-Buzzi F, Meira AV, Cechinel-Filho V (2009) Antinociceptive effects of Abarema cochliacarpos (B.A. Gomes) Barneby & J. W. Grimes (Mimosaceae). Braz J Pharmacogn 19:46–50Google Scholar
  17. 17.
    Stace CA (2004) Flowering plants of the neotropics. Combretaceae. The New York Botanical Garden, Princenton University Press, United Kingdom, pp 110–111Google Scholar
  18. 18.
    Loiola MIB, Rocha EA, Baracho GS, Agra MF (2009) Flora da Paraíba, Brasil: Combretaceae. Acta Bot Bras 23:330–342CrossRefGoogle Scholar
  19. 19.
    Klopper RR, Chatelain C, Bänninger V, Steyn HM, De Wet BC, Arnold TH, Gautier L, Smith GF, Spichiger R (2006) Checklist of the flowering plants of Sub-Saharan Africa. An index of accepted names and synonyms. Southern African botanical diversity network report 42, Sabonet, PretoriaGoogle Scholar
  20. 20.
    Bever BO (1986) Medicinal plants in tropical West Africa. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. 21.
    Iwu MM (1993) Handbook of African medicinal plants. CRC Press, Florida, p 257Google Scholar
  22. 22.
    Hutchings A, Scott AH, Lewis G, Cunninghan A (1996) Zulu medicinal plants: an inventory. University of Natal Press, Pietermaritzburg, p 219Google Scholar
  23. 23.
    Neuwinger HD (1996) African ethnobotany: chemistry, pharmacology, Toxicology edn. Champman and Hall, Bundesrepublik Deutschland, p 942Google Scholar
  24. 24.
    Asuzu IU, Njoku JC (1992) The pharmacological properties of the ethanolic root extract of Combretum dolichopetalum. Phytotherapy 6:125–128CrossRefGoogle Scholar
  25. 25.
    Nunes PHM, Cavalcanti PMS, Galvão SMP, Martins MCC (2009) Antiulcerogenic activity of Combretum leprosum. Pharmazie 64:58–62PubMedGoogle Scholar
  26. 26.
    Gupta M, Mazumder UK, Manikandan L, Bhattacharya S, Senthilkumar GP, Suresh R (2005) Anti-ulcer activity of ethanol extract of Terminalia pallida Brandis. in Swiss albino rats. J Ethnopharmacol 97:405–408PubMedCrossRefGoogle Scholar
  27. 27.
    Aniagu SO, Binda LG, Nwinyi FC, Orisadipe A, Amos S, Wambebe C, Gamaniel K (2005) Anti-diarrhea and ulcer-protective effects of the aqueous root extract of Guiera senegalensis in rodents. J Ethnopharmacol 97:549–554PubMedCrossRefGoogle Scholar
  28. 28.
    Albuquerque UP, Medeiros PM, Almeida ALS et al (2007) Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: a quantitative approach. J Ethnopharmacol 114:325–354PubMedCrossRefGoogle Scholar
  29. 29.
    Agra MF, Baracho GS, Nurit B, Basílio IJLD, Coelho VPM (2007) Medicinal and poisonous diversity of the flora of “Cariri Paraibano”, Brazil. J Ethnopharmacol 111:383–395PubMedCrossRefGoogle Scholar
  30. 30.
    Gouveia MGS, Xavier AA, Barreto AS, Gelain DP, Santos JPA, Araújo AAS, Silva FA, Quintans JS, Agra MF, Cabral AGS, Tavares JF, Silva MS, Quintans-Júnior LJ (2011) Antioxidant, antinociceptive, and anti-inflammatory properties of the ethanolic extract of Combretum duarteanum in rodents. J Med Food 12:1–8Google Scholar
  31. 31.
    Mizui T, Douteuchi M (1983) Effect of polyamines on acidified ethanol-induced gastric lesions in rats. Jpn J Pharmacol 33:934–945CrossRefGoogle Scholar
  32. 32.
    Szelenyi I, Thiemer K (1978) Distention ulcer as a model for testing of drugs for ulcerogenic side effects. Arch Toxicol 41:99–105PubMedCrossRefGoogle Scholar
  33. 33.
    Morimoto Y, Shimohara K, Oshima S, Sukayuki T (1991) Effects of the new anti-ulcer agent KB-5492 on experimental gastric mucosal lesion and gastric mucosal defensive factors, as compared to those of teprenone and cimetidine. Jpn J Pharmacol 57:495–505PubMedCrossRefGoogle Scholar
  34. 34.
    Levine RJ (1971) A method for rapid production of stress ulcers in rats. In: Pfeiffer CJ (ed) Peptic Ulcer. Munksgaard, Copenhagen, pp 92–97Google Scholar
  35. 35.
    Puscas I, Puscas C, Coltau M, Pasça R, Torres J, Márquez M, Herrero E, Fillat O, Ortiz JÁ (1997) Comparative study of the safety and efficacy of ebrotidine versus ranitidine and placebo in the prevention of piroxicaminduced gastroduodenal lesions. Arzneimittelforschung 47:568–572PubMedGoogle Scholar
  36. 36.
    Shay H, Komarov SA, Fels SS, Meranze D, Gruenstein M, Siplet H (1945) A simple method for the uniform production of gastric ulceration in the rat. Gastroenterology 5:43–61Google Scholar
  37. 37.
    Raffatullah S, Tariq M, Al-Yahya MA, Mossa JS, Ageel AM (1990) Evaluation of turmeric (Curcuma longa) for gastric and duodenal antiulcer activity in rats. J Ethnopharmacol 29:25–34CrossRefGoogle Scholar
  38. 38.
    Sikiric P, Seiwerth S, Grabarevic Z et al (1997) The influence of a novel pentadecapeptide, BPC 157, on -nitro-l-arginine methylester and l-arginine effect on stomach mucosa integrity and blood pressure. Eur J Pharmacol 332:23–33PubMedCrossRefGoogle Scholar
  39. 39.
    Matsuda H, Li Y, Yoshikawa M (1999) Roles of capsaicin-sensitive sensory nerves, endogenous nitric oxide, sulphydryls, and prostaglandins in gastroprotection by mormodin Ic, an oleanolic acid oligoglycoside, on ethanolinduced gastric mucosal lesion in rats. Life Sci 65:27–32CrossRefGoogle Scholar
  40. 40.
    Facundo VA, Rios KA, Moreira LS, Militão JSLT, Stabelli RG, Braz-Filho R, Silveira ER (2008). Two new cycloartanes from Combretum leprosum Mart. (Combretaceae). Revista Latinoameriacana de Química 36:3Google Scholar
  41. 41.
    Mahato SB, Kundu AP (1994) 13C NMR spectra of pentacyclic triterpenoids—a compilation and some salient features. Phytochemistry 37:1517–1575CrossRefGoogle Scholar
  42. 42.
    Lewis DA, Hanson PJ (1991) Anti-ulcer drugs of plant origin. Prog Med Chem 28:201–231PubMedCrossRefGoogle Scholar
  43. 43.
    Hiruma-Lima CA, Calvo TR, Rodrigues CM, Andrade FDP, Vilegas W, Souza Brito ARM (2006) Antiulcerogenic activity of Alchornea castaneaefolia: effects on somatostatin, gastrin and prostaglandin. J Ethnopharmacol 104:215–224PubMedCrossRefGoogle Scholar
  44. 44.
    Facundo VA, Andrade CHS, Silveira ER, Braz-Filho R, Hufford CD (1993) Triterpenes and flavonoids from Combretum leprosum. Phytochemistry 32:411–415CrossRefGoogle Scholar
  45. 45.
    Masika PJ, Afolayan AJ (2002) Antimicrobial activity of some plants used for the treatment of livestock disease in the Eastern Cape, South Africa. J Ethnopharmacol 83:129–134PubMedCrossRefGoogle Scholar
  46. 46.
    Katerere DR, Gray AI, Nash RJ, Waigh RD (2003) Antimicrobial activity of pentacyclic triterpenes isolated from African Combretaceae. Phytochemistry 63:81–89PubMedCrossRefGoogle Scholar
  47. 47.
    Chowdhury R, Islam N (2004) Ahydroxylated mansumbinem-28-oic acid from Combretum coccineum. Biochem Syst Ecol 32:443–445CrossRefGoogle Scholar
  48. 48.
    Eloff JN, Katerere DR, Mcgaw LJ (2008) The biological activity and chemistry of the southern African Combretaceae. J Ethnopharmacol 119:686–699PubMedCrossRefGoogle Scholar
  49. 49.
    Hiruma-Lima CA, Batista LM, Almeida ABA, Magri LP, Santos LC, Vilegas W, Brito ARMS (2009) Antiulcerogenic action of ethanolic extract of the resin from Virola surinamensis Warb. (Myristicaceae). J Ethnopharmacol 122:406–409PubMedCrossRefGoogle Scholar
  50. 50.
    Massignani JJ, Lemos M, Maistro EL, Schaphauser HP, Jorge RF, Sousa JPB, Bastos JK, Andrade SF (2009) Antiulcerogenic activity of the essential oil of Baccharis dracunculifolia on different experimental models in rats. Phytother Res 23:1355–1360PubMedCrossRefGoogle Scholar
  51. 51.
    Szabo S (1987) Mechanism of mucosal injury in the stomach and duodenum: time-sequence analysis of morphologic, functional biochemical and histochemical studies. Scand J Gastroenterol 22:21–28CrossRefGoogle Scholar
  52. 52.
    La Casa C, Villegas I, Alarcón de la Lastra C, Motilva V, Marin Calero MJ (2000) Evidence for protective and antioxidant properties of rutin, a natural flavone, against ethanol induced gastric lesions. J Ethnopharmacol 71:45–53PubMedCrossRefGoogle Scholar
  53. 53.
    Hase T, Moss BJ (1973) Microvascular changes of gastric mucosa in the development of stress ulcer in rats. Gastroenterology 65:224–228PubMedGoogle Scholar
  54. 54.
    Kitagawa H, Fujiwara M, Osumi Y (1979) Effect of water-immersion stress on gastric secretion and mucosal blood flow in rats. Gastroenterology 77:298–302PubMedGoogle Scholar
  55. 55.
    Das D, Bandyopadhyay D, Bhattacharjee M, Banerjee RK (1997) Hydroxyl radical is the major causative factor in stress-induced gastric ulceration. Free Radical Biol Med 23:8–18CrossRefGoogle Scholar
  56. 56.
    Shian WM, Sasaki I, Kamiyama Y, Naito H, Matsuno S, Miyazawa T (2000) The role of lipid peroxidation on gastric mucosal lesions induced by water immersion-restraint stress in rats. Surg Today 30:49–53PubMedCrossRefGoogle Scholar
  57. 57.
    Yasukawa K, Kasazaki K, Hyodo F, Utsumi H (2004) Non-invasive analysis of reactive oxygen species generated in rats with water immersion restraint induced gastric lesions using in vivo electron spin resonance spectroscopy. Free Radical Res 38:147–155CrossRefGoogle Scholar
  58. 58.
    Kushima H, Nishijima CM, Rodrigues CM, Rinaldo D, Sassá MF, Bauab TM, Di Stasi LC, Carlos IZ, Souza Brito ARM, Vilegas W, Hiruma-Lima CA (2009) Davilla elliptica and Davilla nitida: gastroprotective, anti-inflammatory immunomodulatory and anti-Helicobacter pylori action. J Ethnopharmacol 123:430–438PubMedCrossRefGoogle Scholar
  59. 59.
    Malfertheiner P, Chan FKL, McColl KEL (2009) Peptic ulcer disease. Lancet 374:1449–1461PubMedCrossRefGoogle Scholar
  60. 60.
    Bandyopadhyay U, Biswas K, Chatterjee R, Bandyopadhyay D, Chattopadhyay I, Ganguly CK, Chakraborty T, Bhattacharya K, Banerjee RK (2002) Gastroprotective effect of Neem (Azadirachta indica) bark extract: possible involvement of H(+)–K(+)-ATPase inhibition and scavenging of hydroxyl radical. Life Sci 71:2845–2865PubMedCrossRefGoogle Scholar
  61. 61.
    Schubert ML (2004) Gastric secretion. Curr Opin Gastroenterol 20:519–525PubMedCrossRefGoogle Scholar
  62. 62.
    Allen A, Flemströn G (2005) Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol 288:1–19Google Scholar
  63. 63.
    Penissi A, Piezzi R (1999) Effect of dehydroleucodine on mucus production. A quantitative study. Dig Dis Sci 44:708–712PubMedCrossRefGoogle Scholar
  64. 64.
    Hiruma-Lima CA, Santos LC, Kushima H, Pellizzon CH, Silveira GG, Vasconcelos PCP, Vilegas W, Souza Brito ARM (2006) Qualea grandiflora, a Brazilian “Cerrado” medicinal plant presents an important antiulcer activity. J Ethnopharmacol 104:207–214PubMedCrossRefGoogle Scholar
  65. 65.
    Lanas A (2008) Role of nitric oxide in the gastrointestinal tract. Arthritis Res Ther 10:1–6CrossRefGoogle Scholar
  66. 66.
    Chandranath SI, Bastaki SM, Singh J (2002) A comparative study on the activity of lansoprazole, omeprazole and PD-136450 on acidified ethanoland indomethacin-induced gastric lesions in the rat. Clin Exp Pharmacol Physiol 29:173–180PubMedCrossRefGoogle Scholar
  67. 67.
    Salim AS (1993) Sulfhydryl-containing agents: new approach to the problem of refractory peptic ulceration. Pharmacology 46:281–288PubMedCrossRefGoogle Scholar
  68. 68.
    Kushima H, Hiruma-Lima CA, Santos MA, Viana E, Coelho-Ferreira M, Brito ARMS (2005) Gastroprotective activity of Pradosia huberi on experimentally induced gastric lesions in rodents: role of endogenous sulfhydryls and nitric oxide. J Ethnopharmacol 101:61–67PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer 2012

Authors and Affiliations

  • Gedson Rodrigues de Morais Lima
    • 1
  • Camila de Albuquerque Montenegro
    • 1
  • Heloina de Sousa Falcão
    • 1
  • Neyres Zínea Taveira de Jesus
    • 1
  • Analúcia Guedes Silveira Cabral
    • 1
  • Isis Fernandes Gomes
    • 1
  • Maria de Fátima Agra
    • 1
  • Josean Fechine Tavares
    • 1
  • Leônia Maria Batista
    • 1
  1. 1.Departamento de Ciências Farmacêuticas, Laboratório de Tecnologia FarmacêuticaUniversidade Federal da ParaíbaJoão PessoaBrazil

Personalised recommendations