Advertisement

Journal of Natural Medicines

, Volume 67, Issue 3, pp 438–445 | Cite as

Medicinal parasitic plants on diverse hosts with their usages and barcodes

  • Nantiya Kwanda
  • Kowit Noikotr
  • Runglawan Sudmoon
  • Tawatchai Tanee
  • Arunrat ChaveerachEmail author
Original Paper

Abstract

Medicinal properties of parasitic plants were investigated by means of ethnobotanical study in some areas of northeastern Thailand. Important traditional usages are: Scurrula atropurpurea nourishes blood, Dendrophthoe pentandra decreases high blood pressure, and Helixanthera parasitica treats liver disease. Their systematics were also determined. The research is based on findings obtained from 100 parasite–host pairs. Of these, eight parasitic species were recorded; they are members of two families, viz. family Loranthaceae, namely D. lanosa, D. pentandra, H. parasitica, Macrosolen brandisianus, M. cochinchinensis and S. atropurpurea, and family Viscaceae, namely Viscum articulatum and V. ovalifolium. In addition, each parasitic species is found on diverse hosts, indicating non-host-parasitic specificity. Species-specific tagging of all species studied was carried out using the rbcL and psbA-trnH chloroplast regions. These tag sequences are submitted to GenBank databases under accession numbers JN687563–JN687578. Genetic distances calculated from nucleotide variations in a couple of species of each genus, Dendrophthoe, Macrosolen, and Viscum, were 0.032, 0.067 and 0.036 in the rbcL region, and 0.269, 0.073 and 0.264 in the psbA-trnH spacer region, respectively. These variations will be used for further identification of incomplete plant parts or other forms such as capsule, powder, dried or chopped pieces.

Keywords

Parasitic plant Medicinal plant Loranthaceae Viscaceae rbcpsbA-trn

References

  1. 1.
    Sornlump P (2000) Encyclopedia of medicinal plants, vol 4. Kokya Esarn, Mahidol University Foundation, BangkokGoogle Scholar
  2. 2.
    Faculty of Pharmaceutical Sciences, Mahidol University (2009) Scurrula atropurpurea (Blume) Danser. Matichon Newsweek 29:66Google Scholar
  3. 3.
    Lirdprapamongkol K, Mahidol C, Thongnest S, Prawat H, Ruchirawat S, Srisomsap C, Surarit R, Punyarit P, Svasti J (2003) Anti-metastatic effects of aqueous extract of Helixanthera parasitica. J Ethnopharmacol 86:253–256PubMedCrossRefGoogle Scholar
  4. 4.
    Chuakul W, Sornlump P, Temsirirugkul R, Pownil W (1995) Siampisuchyaprugs: Pumpanya khong chad. Faculty of Pharmaceutical Sciences, Mahidol University, BangkokGoogle Scholar
  5. 5.
    Prasitpuriprecha C, Sripanidkulchai B, Lulitanond V, Saguansermsri J (2006) Evaluation of immunomodulating activity of selected Thai medicinal plants by lymphocytes proliferation assay. Indian J Pharm Sci 2:53–62CrossRefGoogle Scholar
  6. 6.
    Ohashi K, Winarno Mukai M, Shibuya H (2003) Preparation and cancer cell invasion inhibitory effects of C16-alkynic fatty acids. Chem Pharm Bull 51:463–466PubMedCrossRefGoogle Scholar
  7. 7.
    Wiart C (2006) Medicinal plants of the Asia-Pacific: drugs for the future. World Scientific Publishing Co. Pte Ltd, SingaporeCrossRefGoogle Scholar
  8. 8.
    Ameer OZ, Salman IM, Siddiqui MJA, Yam MF, Sriramaneni RN, Mutee AF, Sadikun A, Ismail Z, Asmawi MZ (2009) Vascular responsiveness to Macrosolen cochinchinenesis extracts in isolated rat thoracid aorta. Int J Pharmacol 5:191–199CrossRefGoogle Scholar
  9. 9.
    Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321CrossRefGoogle Scholar
  10. 10.
    Hebert PDN, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Syst Biol 54:852–859PubMedCrossRefGoogle Scholar
  11. 11.
    Palmer JD (1985) Comparative organization of chloroplast genome. Annu Rev Genet 19:325–354PubMedCrossRefGoogle Scholar
  12. 12.
    Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Bogorad L, Vasil IK (eds) The molecular biology of plastids. Cell culture and somatic cell genetics of plants, vol 7a. Academic Press, San Diego, pp 5–53Google Scholar
  13. 13.
    Downie SR, Palmer JD (1991) Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman and Hall, New York, pp 14–35Google Scholar
  14. 14.
    Katayama H, Ogihara Y (1993) Structural alterations of the chloroplast genome found in grasses are not common in monocots. Curr Genet 23:160–165PubMedCrossRefGoogle Scholar
  15. 15.
    Downie SR, Llanas E, Katz-Downie DS (1996) Multiple independent losses of the rpoC1 intron in angiosperm chloroplast DNAs. Syst Bot 21:135–151CrossRefGoogle Scholar
  16. 16.
    Thiede J, Schmidt SA, Rudolph B (2007) Phylogenetic implication of chloroplast rpoC1 intron loss in the Aizoaceae (Caryophyllales). Biochem Syst Ecol 35:372–380CrossRefGoogle Scholar
  17. 17.
    Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102:8369–8374PubMedCrossRefGoogle Scholar
  18. 18.
    Chase MW, Cowan RS, Hollingsworth PM, Berg C, Madriñán S, Petersen G, Seberg O, Jorgsensen T, Cameron KM, Carine M, Pedersen N, Hedderson TAJ, Conrad F, Salazar G, Richardson JE, Hollingsworth ML, Barraclough TG, Kelly L, Wilkinson M (2007) A proposal for a standardised protocol to barcode all land plants. Taxon 56:295–299Google Scholar
  19. 19.
    Newmaster SG, Fazekas AJ, Steeves AJ, Janovec J (2008) Testing candidate plant barcode regions in the Myristicaceae. Mol Ecol Resour 8:480–490PubMedCrossRefGoogle Scholar
  20. 20.
    Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, van der Bank M, Chase MW, Cowan RS, Erickson DL, Fazekas AJ, Graham SW, James KE, Kim KJ, Kress WJ, Schneider H, van Alphen Stahl J, Barrett SC, van den Berg C, Bogarin D, Burgess KS, Cameron KM, Carine M, Chacón J, Clark A, Clarkson JJ, Conrad F, Devey DS, Ford CS, Hedderson TA, Hollingsworth ML, Husband BC, Kelly LJ, Kesanakurti PR, Kim JS, Kim YD, Lahaye R, Lee HL, Long DG, Madriñán S, Maurin O, Meusnier I, Newmaster SG, Park CW, Percy DM, Petersen G, Richardson JE, Salazar GA, Savolainen V, Seberg O, Wilkinson MJ, Yi DK, Little DPA (2009) DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797Google Scholar
  21. 21.
    Barlow BA (2002) Loranthaceae. In: Santisuk T, Larsen K (eds), Flora of Thailand, volume 7 part 4. Prachachon Co. Ltd., Bangkok, pp 665–706, 707–719Google Scholar
  22. 22.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  23. 23.
    Hillis DM (1987) Molecular versus morphological approaches to systematics. Annu Rev Ecol Syst 18:23–42CrossRefGoogle Scholar
  24. 24.
    Mower JP, Stefanović S, Hao W, Gummow JS, Jain K, Ahmed D, Palmer JD (2010) Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes. BMC Biol 8:150PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer 2012

Authors and Affiliations

  • Nantiya Kwanda
    • 1
  • Kowit Noikotr
    • 2
  • Runglawan Sudmoon
    • 1
  • Tawatchai Tanee
    • 3
  • Arunrat Chaveerach
    • 1
    Email author
  1. 1.Department of Biology, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.Department of Biology, Faculty of ScienceRamkhamhaeng UniversityBangkokThailand
  3. 3.Faculty of Environment and Resource StudiesMahasarakham UniversityMahasarakhamThailand

Personalised recommendations