Journal of Natural Medicines

, Volume 67, Issue 2, pp 264–270 | Cite as

Protein tyrosine phosphatase 1B inhibitory activity of Indonesian herbal medicines and constituents of Cinnamomum burmannii and Zingiber aromaticum

  • Azis Saifudin
  • Shigetoshi Kadota
  • Yasuhiro Tezuka
Original Paper


We screened water and methanol extracts of 28 Indonesian medicinal plants for their protein tyrosine phosphatase 1B (PTP1B) inhibitory activities. Nine water extracts, i.e., Alstonia scholaris leaf, Blumea balsamifera, Cinnamomum burmannii, Cymbopogon nardus, Melaleuca leucadendra, Phyllanthus niruri, Piper nigrum, Syzygium aromaticum, and Sy. polyanthum, exhibited ≥70 % inhibition at 25 μg/mL, whereas 11 methanol extracts, i.e., Als. scholaris, Andrographis paniculata, B. balsamifera, Ci. burmannii, Curcuma heyneana, Glycyrrhiza glabra, M. leucadendra, Punica granatum, Rheum palmatum, Sy. polyanthum, and Z. aromaticum, exhibited ≥70 % inhibition at 25 μg/mL. Water extracts of B. balsamifera (IC50, 2.26 μg/mL) and M. leucadendra (IC50, 2.05 μg/mL), and methanol extracts of Ci. burmannii (IC50, 2.47 μg/mL), Pu. granatum (IC50, 2.40 μg/mL), and Sy. polyanthum (IC50, 1.03 μg/mL) exhibited strong inhibitory activity, which was comparable with that of the positive control, RK-682 (IC50, 2.05 μg/mL). The PTP1B inhibitory activity of the constituents of Ci. burmannii and Z. aromaticum was then evaluated. 5′-Hydroxy-5-hydroxymethyl-4″,5″-methylenedioxy-1,2,3,4-dibenzo-1,3,5-cycloheptatriene (2; IC50, 29.7 μM) and trans-cinnamaldehyde (5; IC50, 57.6 μM) were the active constituents of Ci. burmannii, while humulatrien-5-ol-8-one (21; IC50, 27.7 μM), kaempferol-3,4′-di-O-methyl ether (32; IC50, 17.5 μM), and (S)-6-gingerol (33; IC50, 28.1 μM) were those of Z. aromaticum. These results suggest that these medicinal plants may contribute to the treatment and/or prevention of type II diabetes and/or obesity through PTP1B inhibition.


Protein tyrosine phosphatase 1B Inhibitor Indonesian medicinal plant Cinnamomum burmannii Zingiber aromaticum 



We are thankful to Dr. Sucipto (PJ. Bintang Terang Lestari, Traditional Medicine Supplier, Jakarta) and Dr. Aty Widyawaruyanti (Faculty of Pharmacy, Airlangga University) for their authentication of the plant materials. One of the authors (A.S.) would like to thank the Indonesian Ministry of Education for a Ph.D. grant.


  1. 1.
    Byon JCH, Kusari AB, Kusari J (1998) Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction. Mol Cell Biochem 182:101–108PubMedCrossRefGoogle Scholar
  2. 2.
    Tonks NK, Diltz CD, Fischer EH (1988) Characterization of the major protein-tyrosine-phosphatases of human placenta. J Biol Chem 263:6731–6737PubMedGoogle Scholar
  3. 3.
    González-Rodríguez Á, Gutierrez JAM, Sanz-González S, Ros M, Burks DJ, Valverde ÁM (2010) Inhibition of PTP1B restores IRS1-mediated hepatic insulin signaling in IRS2-deficient mice. Diabetes 59:588–599PubMedCrossRefGoogle Scholar
  4. 4.
    Ahmad F, Li P-M, Meyerovitch J, Goldstein BJ (1995) Osmotic loading of neutralizing antibodies demonstrates a role for protein-tyrosine phosphatase 1B in negative regulation of the insulin action pathway. J Biol Chem 270:20503–20508PubMedCrossRefGoogle Scholar
  5. 5.
    Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan C-C, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283:1544–1548PubMedCrossRefGoogle Scholar
  6. 6.
    Haj FG, Zabolotny JM, Kim Y-B, Kahn BB, Neel BG (2005) Liver-specific protein-tyrosine phosphatase 1B (PTP1B) re-expression alters glucose homeostasis of PTP1B−/− mice. J Biol Chem 280:15038–15046PubMedCrossRefGoogle Scholar
  7. 7.
    Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y, Kim Y-B, Elmquist JK, Tartaglia LA, Kahn BB, Neel BG (2002) PTP1B regulates leptin signal transduction in vivo. Dev Cell 2:489–495PubMedCrossRefGoogle Scholar
  8. 8.
    Bence KK, Delibegovic M, Xue B, Gorgun CZ, Hotamisligil GS, Neel BG, Kahn BB (2006) Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med 12:917–924PubMedCrossRefGoogle Scholar
  9. 9.
    Liu G, Trevillyan JM (2002) Protein tyrosine phosphatase 1B as a target for the treatment of impaired glucose tolerance and type II diabetes. Curr Opin Investig Drugs 3:1608–1616PubMedGoogle Scholar
  10. 10.
    Tonks NK (2003) PTP1B: from the sidelines to the front lines! FEBS Lett 546:140–148PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang Y-Z, Lee S-Y (2003) PTP1B inhibitors as potential therapeutics in the treatment of type 2 diabetes and obesity. Expert Opin Investig Drugs 12:223–233PubMedCrossRefGoogle Scholar
  12. 12.
    Taylor SD, Hill B (2004) Recent advances in protein tyrosine phosphatase 1B inhibitors. Expert Opin Investig Drugs 13:199–214PubMedCrossRefGoogle Scholar
  13. 13.
    Combs AP (2010) Recent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancer. J Med Chem 53:2333–2344PubMedCrossRefGoogle Scholar
  14. 14.
    Mukherjee PK, Maiti K, Mukherjee K, Houghton PJ (2006) Leads from Indian medicinal plants with hypoglycemic potentials. J Ethnopharmacol 106:1–28PubMedCrossRefGoogle Scholar
  15. 15.
    Broadhurst CL, Polansky MM, Anderson RA (2000) Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro. J Agric Food Chem 48:849–852PubMedCrossRefGoogle Scholar
  16. 16.
    Mueller M, Jungbauer A (2009) Culinary plants, herbs and spices—a rich source of PPARγ ligands. Food Chem 117:660–667CrossRefGoogle Scholar
  17. 17.
    Khan A, Safdar M, Khan MMA, Khattak KN, Anderson RA (2003) Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 26:3215–3218PubMedCrossRefGoogle Scholar
  18. 18.
    Otto AD (2010) Cinnamon as a supplemental treatment for impaired glucose tolerance and type 2 diabetes. Curr Diab Rep 10:170–172PubMedCrossRefGoogle Scholar
  19. 19.
    Prasad RC, Herzog B, Boone B, Sims L, Waltner-Law M (2005) An extract of Syzygium aromaticum represses genes encoding hepatic gluconeogenic enzymes. J Ethnopharmacol 96:295–301PubMedCrossRefGoogle Scholar
  20. 20.
    Chen RM, Hu LH, An TY, Li J, Shen Q (2002) Natural PTP1B inhibitors from Broussonetia papyrifera. Bioorg Med Chem Lett 12:3387–3390PubMedCrossRefGoogle Scholar
  21. 21.
    Bae EY, Na MK, Njamen D, Mbafor JT, Fomum ZT, Cui L, Choung DH, Kim BY, Oh WK, Ahn JS (2006) Inhibition of protein tyrosine phosphatase 1B by prenylated isoflavonoids isolated from the stem bark of Erythrina addisoniae. Planta Med 72:945–948PubMedCrossRefGoogle Scholar
  22. 22.
    Na MK, Yang S, He L, Oh H, Kim BS, Oh WK, Kim BY, Ahn JS (2006) Inhibition of protein tyrosine phosphatase 1B by ursane-type triterpenes isolated from Symplocos paniculata. Planta Med 72:261–263PubMedCrossRefGoogle Scholar
  23. 23.
    Baumgartner RR, Steinmann D, Heiss EH, Atanas GA, Ganzera M, Stuppner H, Dirsch VM (2010) Bioactivity-guided isolation of 1,2,3,4,6-penta-O-galloyl-d-glucopyranose from Paeonia lactiflora roots as a PTP1B inhibitor. J Nat Prod 73:1578–1581PubMedCrossRefGoogle Scholar
  24. 24.
    Sastroamidjojo S (1997) Tumbuh-tumbuhan yang dipergunakan sebagai obat asli Indonesia. In: Tjokronegoro A (ed) Obat asli Indonesia. Dian Rakyat, Indonesia, pp 27–266Google Scholar
  25. 25.
    PT Eisai Indonesia (1995) Medicinal herb index in Indonesia. PT Eisai Indonesia, JakartaGoogle Scholar
  26. 26.
    Subehan Kadota S, Tezuka Y (2008) In vitro mechanism-based inactivation of cytochrome P450 3A4 by a new constituent of Cinnamomum burmani. Planta Med 74:1474–1480PubMedCrossRefGoogle Scholar
  27. 27.
    Usia T, Iwata H, Hiratsuka A, Watabe T, Kadota S, Tezuka Y (2004) Sesquiterpenes and flavonol glycosides from Zingiber aromaticum and their CYP3A4 and CYP2D6 inhibitory activities. J Nat Prod 67:1079–1083PubMedCrossRefGoogle Scholar
  28. 28.
    Cui L, Na MK, Oh H, Bae EY, Jeong DG, Ryu SE, Kim S, Kim BY, Oh WK, Ahn JS (2006) Protein tyrosine phosphatase 1B inhibitors from Morus root bark. Bioorg Med Chem Lett 16:1426–1429PubMedCrossRefGoogle Scholar
  29. 29.
    Hamaguchi T, Sudo T, Osada H (1995) RK-682, a potent inhibitor of tyrosine phosphatase, arrested the mammalian cell cycle progression at G1 phase. FEBS Lett 372:54–58PubMedCrossRefGoogle Scholar
  30. 30.
    Tsuruga T, Chun Y-T, Ebizuka Y, Sankawa U (1991) Biologically active constituents of Melaleuca leucadendron: inhibitors of induced histamine release from rat mast cells. Chem Pharm Bull 39:3276–3278PubMedCrossRefGoogle Scholar
  31. 31.
    Lee S, Wang Q (2007) Recent development of small molecular specific inhibitor of protein tyrosine phosphatase 1B. Med Res Rev 27:553–573PubMedCrossRefGoogle Scholar
  32. 32.
    Shan B, Cai Y-Z, Brooks JD, Corke H (2007) Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria. J Agric Food Chem 55:5484–5490PubMedCrossRefGoogle Scholar
  33. 33.
    Anand P, Muraly KY, Tandon V, Murthy PS, Chandra R (2010) Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenolpyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats. Chem Biol Interact 186:72–81PubMedCrossRefGoogle Scholar
  34. 34.
    Mishra A, Bhatti R, Singh A, Ishar MPS (2010) Ameliorative effect of the cinnamon oil from Cinnamomum zeylanicum upon early stage diabetic nephropathy. Planta Med 76:412–417PubMedCrossRefGoogle Scholar
  35. 35.
    Huang B, Yuan HD, Kim DY, Quan HY, Chung SH (2011) Cinnamaldehyde prevents adipocyte differentiation and adipogenesis via regulation of peroxisome proliferator-activated receptor-γ (PPARγ) and AMP-activated protein kinase (AMPK) pathways. J Agric Food Chem 59:3666–3673PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer 2012

Authors and Affiliations

  • Azis Saifudin
    • 1
  • Shigetoshi Kadota
    • 1
  • Yasuhiro Tezuka
    • 1
  1. 1.Institute of Natural MedicineUniversity of ToyamaToyamaJapan

Personalised recommendations