Journal of Natural Medicines

, Volume 67, Issue 1, pp 107–112 | Cite as

Comparative extrapyramidal effects of Rauwolfia vomitoria, chlorpromazine and reserpine in mice

  • Sunday Agba Bisong
  • Richard Earl Brown
  • Eme Effiom Osim
Original Paper

Abstract

Most antipsychotics interfere with the dopaminergic system, resulting in extrapyramidal effects. This study compared the extrapyramidal effects of chlorpromazine (Cpz), the herb Rauwolfia vomitoria (RV) and its alkaloid reserpine (Res), used as antipsychotics, in mice. Ninety age-matched male CD-1 strain of mice (25–33 g body weight) were divided into 3 groups, each consisting of 5 subgroups (n = 6). Cpz (0.0, 0.25, 1.0, 2.0 and 4.0 mg/kg, i.p.) was administered 30 min before testing. RV (0.0, 0.25, 1.0, 2.0 and 4.0 mg/kg, i.p.) and Res (0.0, 0.1, 0.4, 0.8, 1.6 mg/kg, i.p.) were administered 24 h before testing. Locomotor behaviour (open field test) and motor coordination (acceleratory rotarod) were assessed. Mice were also observed for 10 min for tremor and vacuous chewing movement (VCM). CPZ and Res dose-dependently decreased locomotor behaviour and impaired motor coordination (p < 0.01). RV also decreased locomotor behaviour (4.0 mg/kg; p < 0.05) but had minimal effect on motor coordination. VCM was lower in the RV group (0.17 ± 0.16/10 min) than the Res (6.8 ± 1.36/10 min) and Cpz groups (7.83 ± 1.95/10 min): F (4,25) = 10.703; p < 0.01. The frequency of bouts of tremor was also lower in the RV group (1.17 ± 0.72/10 min) than the Res (21.2 ± 5.63/10 min) and Cpz (7.83 ± 1.59/10 min) groups: F (4,25) = 11.012; p < 0.001. The root bark extract of R. vomitoria, therefore, has great potential in the management of psychotic disorders.

Keywords

Chlorpromazine Rauwolfia vomitoria Reserpine Extrapyramidal effects 

References

  1. 1.
    Swett C Jr, Cole JO, Shapiro S, Slone D (1977) Extrapyramidal side effects in chlorpromazine recipients: emergence according to benztropine prophylaxis. Arch Gen Psychiatry 34(8):942–943PubMedCrossRefGoogle Scholar
  2. 2.
    Patterson BD, Swingler D, Willows S (2005) Prevalence of and risk factors for tardive dyskinesia in a Xhosa population in the Eastern Cape of South Africa. Schizophr Res 76:89–97PubMedCrossRefGoogle Scholar
  3. 3.
    Bishnoi M, Kumar A, Chopra K, Kulkarni SK (2007) Comparative neurochemical changes associated with chronic administration of typical and atypical neuroleptics: implications in tardive dyskinesia. Indian J Exp Biol 45(2):175–179PubMedGoogle Scholar
  4. 4.
    Llorca PM, Chereau I, Bayle FJ, Lancon C (2002) Tardive dyskinesias and antipsychotics: a review. Eur Psychiatry 17(3):129–138PubMedCrossRefGoogle Scholar
  5. 5.
    Wang PS, Schneeweiss S, Avorn J (2005) Risk of death in elderly users of conventional vs. atypical antipsychotic medications. N Engl J Med 353(22):2335–2341PubMedCrossRefGoogle Scholar
  6. 6.
    Corbett R, Camacho F, Woods AT, Kerman LL, Fishkin RJ, Brooks K, Dunn RW (1995) Antipsychotic agents antagonize non-competitive N-methyl D-aspartate antagonist-induced behaviors. Psychopharmacology 120:67–77PubMedCrossRefGoogle Scholar
  7. 7.
    Hardman JG, Limbird LE, Gilman AG (2001) Drugs and the treatment of psychiatric disorders: the pharmacological basis of therapeutics, 10th edn. McGraw-Hill, New YorkGoogle Scholar
  8. 8.
    Remington G (2003) Understanding antipsychotic “atypicality”: a clinical and pharmacological moving target. J Psychiatry Neurosci 28(4):275–284PubMedGoogle Scholar
  9. 9.
    Peirre JM (2005) Extrapyramidal symptoms with atypical antipsychotics: incidence, prevention and management. Drug Saf 28:191–208CrossRefGoogle Scholar
  10. 10.
    Chong MY, Tan CH, Fujii S, Yang S, Ungvari GS, Si T, Chung EK, Sim K, Tsang HY, Shinfuku N (2004) Antipsychotic drug prescription for schizophrenia in East Asia: rationale for change. Psychiatry Clin Neurosci 58:61–67PubMedCrossRefGoogle Scholar
  11. 11.
    World Health Organization (WHO) (2003). Essential medicines, 13th edn. WHO model list. http://www.who.int/hac/techguidance/pht/essentialmed/en. Retrieved 23 Oct 2007
  12. 12.
    Makanjuola ROA (1987) Yoruba traditional healer in psychiatry. Healers’ concept of the nature and aetiology of mental disorders. Afr J Med Med Sci 16:53–59PubMedGoogle Scholar
  13. 13.
    Gureje O, Acha RA, Odejide OA (1995) Pathways to psychiatric care in Ibadan, Nigeria. Trop Geogr Med 47:125–129PubMedGoogle Scholar
  14. 14.
    Kanba S, Yamada K, Mizushima H, Asai M (1998) Use of herbal medicine for treating psychiatric disorders in Japan. Psychiatry Clin Neurosci 52:331–333Google Scholar
  15. 15.
    Unützer J, Klap R, Sturm R, Young AS, Marmon T, Shatkin J, Wells KB (2000) Mental disorders and the use of alternative medicine: results from a national survey. Am J Psychiatry 157:1851–1857PubMedCrossRefGoogle Scholar
  16. 16.
    Akpanabiatu MI, Umoh IB, Eyong EU (2006) Influence of Rauwolfia vomitoria root bark on cardiac enzymes of normal Wistar albino rats. Recent Progr Med Plants 14:273–278Google Scholar
  17. 17.
    Kweifio-Okai G, Bird D, Field B, Ambrose R, Carol AR, Smith P, Valdes R (1995) Anti-inflammatory activity of a Ghanaian antiarthritic herbal preparation: III. J Ethnopharmacol 46:7–15PubMedCrossRefGoogle Scholar
  18. 18.
    Amole OO, Onabanjo AO (1999) Reserpine: the effect and uses of Rauwolfia vomitoria. J Chemother 3:45–47Google Scholar
  19. 19.
    Campbell JIA, Mortensen A, Molgaard P (2006) Tissue lipid lowering-effect of a traditional Nigerian anti-diabetic infusion of Rauwolfia vomitoria foliage and Citrus aurantium fruit. J Ethnopharmacol 104:379–386PubMedCrossRefGoogle Scholar
  20. 20.
    Bemis DL, Capodice JL, Gorroocurn P, Katz AE, Buttyan R (2006) Anti-prostate cancer activity of β-carboline alkaloid enriched extract from Rauwolfia vomitoria. Int J Oncol 29:1065–1073PubMedGoogle Scholar
  21. 21.
    Bisong SA, Akpanabiatu MI, Osim EE (2006) The effect of crude root extract of Rauwolfia vomitoria on learning and memory in mice. Recent Progr Med Plants 22:153–162Google Scholar
  22. 22.
    Amole OO, Yemitan OK, Oshikoya KA (2009) Anticonvulsant activity of Rauvolfia Vomitoria (Afzel). Afr J Pharmacy Pharmacol 3(6):319–322Google Scholar
  23. 23.
    López-Muñoz F, Alamo C, Cuenca E, Shen WW, Clervoy P, Rubio G (2005) History of the discovery and clinical introduction of chlorpromazine. Ann Clin Psychiatry 17(3):113–135PubMedCrossRefGoogle Scholar
  24. 24.
    Aminoff MJ (2004) Pharmacologic management of Parkinsonism and other movement disorders. In: Katzung BG (ed) Basic and clinical pharmacology, 9th edn. McGraw-Hill, Singapore, pp 447–461Google Scholar
  25. 25.
    Giachetti A, Shore PA (1978) The reserpine receptor. Life Sci 23(2):89–92PubMedCrossRefGoogle Scholar
  26. 26.
    Isharwel S, Gupta S (2006) Rustmon Jal Vakil. His contributions to cardiology. Texax Heart Inst J 33(2):161–170Google Scholar
  27. 27.
    Klyushnichenko VE, Yakimov SA, Tuzova TP, Syagailo YV, Kuzovkina IN, Wulfson AN, Miroshnikov AI (1995) Determination of indole alkaloids from R. serpentina and R. vomitoria by high-performance liquid chromatography and high-performance thin-layer chromatography. J Chromatogr 704:357–362CrossRefGoogle Scholar
  28. 28.
    Brown RE, Corey SC, Moore AK (1999) Differences in measures of exploration and fear in MHC-congenic C57BL/6J and B6-H-2K mice. Behav Genet 26:263–271CrossRefGoogle Scholar
  29. 29.
    Caston J, Devulder B, Jouen F, Lalonde R (1999) Role of an enriched environment on the restoration of behavioral deficits in Lurcher mutant mice. Dev Psychobiol 35:291–303PubMedCrossRefGoogle Scholar
  30. 30.
    Seibt KJ, Oliveira Rda L, Zimmermann FF, Capiotti KM, Bogo MR, Ghisleni G, Bonan CD (2010) Antipsychotic drugs prevent the motor hyperactivity induced by psychotomimetic MK-801 in zebrafish (Danio rerio). Behav Brain Res. 25;214(2):417–422Google Scholar
  31. 31.
    Naidu PS, Kulkarni SK (2002) Reversal of reserpine-induced vacuous chewing movements by ethanol: possible GABA-A receptor modulation. Brain Pharmacol 1:189–195Google Scholar
  32. 32.
    Casey DE (2000) Tardive dyskinesia: pathophysiology and animal models. J Clin Psychiatry 61:5–9PubMedGoogle Scholar
  33. 33.
    Andreassen OA, Jorgessen HA (2000) Neurotoxicity associated with neuroleptic induced oral dyskinesias in rats implications for tardive dyskinesia? Prog Neurobiol 61:525–541PubMedCrossRefGoogle Scholar
  34. 34.
    Miwa H (2007) Rodent models of tremor. Cerebellum 6(1):66–72PubMedCrossRefGoogle Scholar
  35. 35.
    Oyewole OI, Massaquoi HO (2008) Oral administration of Rauwolfia vomitoria extract has no untoward effect on kidney and liver functions in rats. Afr J Biotechnol 7(10):1577–1580Google Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer 2012

Authors and Affiliations

  • Sunday Agba Bisong
    • 1
    • 2
  • Richard Earl Brown
    • 2
  • Eme Effiom Osim
    • 1
  1. 1.Department of Physiology, College of Medical SciencesUniversity of CalabarCalabarNigeria
  2. 2.Department of Psychology and NeuroscienceDalhousie UniversityHalifaxCanada

Personalised recommendations