Journal of Natural Medicines

, Volume 67, Issue 1, pp 222–227 | Cite as

The antidepressant effect of secoisolariciresinol, a lignan-type phytoestrogen constituent of flaxseed, on ovariectomized mice

  • Ying-Feng Wang
  • Zhi-Kun Xu
  • Dong-Hui Yang
  • Hai-Yan Yao
  • Bao-Shan Ku
  • Xiao-Qing Ma
  • Cheng-Zhi Wang
  • Shu-Lin Liu
  • Shao-Qing Cai


Secoisolariciresinol (SECO) is a natural lignan-type phytoestrogen constituent mainly found in flaxseed. It can be metabolized in vivo to mammalian lignans of enterodiol and enterolactone, which have been proven to be effective in relieving menopausal syndrome. Depression is one of the most common symptoms of menopausal syndrome, and is currently treated with estrogen replacement and antidepressant therapy. However, due to the serious side-effects of such agents, there are urgent needs for safer and more tolerable treatments. In this paper, using two classical depression models, the forced swimming test and the tail suspension test, we report the antidepressant effect of SECO on ovariectomized (OVX) mice by intragastric administration for 14 consecutive days at doses of 5, 10 and 20 mg/kg. The results showed that SECO (10 mg/kg) treatment could significantly reduce the duration of immobility of OVX mice in these two models compared with the control group (OVX mice + vehicle), which was similar to the positive control imipramine. In addition, SECO treatment could substantially increase brain monoamine (norepinephrine and dopamine) levels in OVX mice. The present studies showed that SECO can reverse depressive-like behavior and exhibit monoamine-enhancing effects.


Secoisolariciresinol Ovariectomized mice Forced swimming Tail suspension Monoamine level 


  1. 1.
    Yan KL, Deng ZR, Guo KF (2005) Clinical characteristics of women in menopause and depression status. Chin J Clin Rehabil 48:169–169Google Scholar
  2. 2.
    Kovalevsky G (2005) Female sexual dysfunction and use of hormone therapy in postmenopausal women. Semin Reprod Med 23:180–187PubMedCrossRefGoogle Scholar
  3. 3.
    Yan M (2008) The latest progress in antidepressant drugs application. Chin Foreign Med Treat 34:161–162Google Scholar
  4. 4.
    Song QW, Wang XG (2004) Progress in research on PE for prevention and treatment of perimenopausal syndrome. Foreign Med Sci (Sect Matern Child Health) 30:124–125Google Scholar
  5. 5.
    Wang LQ, Hattori M, Meselhy MR, Li Y, Qin GW (2000) Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone. Chem Pharm Bull 48:1606–1610PubMedCrossRefGoogle Scholar
  6. 6.
    Haggans CJ, Travelli EJ, Thomas W, Martini MC, Slavin JL (2000) The effect of flaxseed and wheat bran consumption on urinary estrogen metabolites in premenopausal women. Cancer Epidemiol Biomark Prev 9:719–725Google Scholar
  7. 7.
    Saarinen NM, Warri A, Makela SI, Eckerman C, Reunanen M, Ahotupa M, Salmi SM, Franke AA, Kangas L, Santti R (2000) Hydroxymatairesinol, a novel enterolactone precursor with antitumor properties from coniferous tree (Picea abies). Nutr Cancer 36:207–216PubMedCrossRefGoogle Scholar
  8. 8.
    Schöttner M, Gansser D, Spiteller G (1997) Interaction of lignans with human sex hormone binding globulin (SHBG). Z Naturforsch C 52:834–843PubMedGoogle Scholar
  9. 9.
    Carreau C, Potier M, Flouriot G, Bennetau-Pelissero C (2008) Enterodiol and enterolactone, two major diet-derived polyphenol metabolites have different impact on ERα transcriptional activation in human breast cancer cells. J Steroid Biochem 110:176–185CrossRefGoogle Scholar
  10. 10.
    Yamauchi S, Sugahara T, Matsugi J, Someya T, Masuda T, Kishida T, Akiyama K, Maruyama M (2007) Effect of the benzylic structure of lignan on antioxidant activity. Biosci Biotechnol Biochem 71:2283–2290PubMedCrossRefGoogle Scholar
  11. 11.
    Yamauchi S, Masuda T, Sugahara T, Kawaguchi Y, Ohuchi M, Someya T, Akiyama J, Tominaga S, Yamawaki M, Kishida T, Akiyama K, Maruyama M (2008) Antioxidant activity of butane type lignans, secoisolariciresinol, dihydroguaiaretic acid, and 7,7′-oxodihydroguaiaretic acid. Biosci Biotechnol Biochem 72:2981–2986PubMedCrossRefGoogle Scholar
  12. 12.
    Lehraiki A, Attoumbré J, Bienaimé C, Matifat F, Bensaddek L, Nava-Saucedo E, Fliniaux MA, Ouadid-Ahidouch H, Baltora-Rosset S (2010) Extraction of lignans from flaxseed and evaluation of their biological effects on breast cancer MCF-7 and MDA-MB-231 cell lines. J Med Food 13:834–841PubMedCrossRefGoogle Scholar
  13. 13.
    Masuda T, Akiyama J, Fujimoto A, Yamauchi S, Maekawa T, Sone Y (2010) Antioxidation reaction mechanism studies of phenolic lignans, identification of antioxidation products of secoisolariciresinol from lipid oxidation. Food Chem 123:442–450CrossRefGoogle Scholar
  14. 14.
    Wang CZ, Ma XQ, Yang DH, Guo ZR, Liu GR, Zhao GX, Tang J, Zhang YN, Ma M, Cai SQ, Ku BS, Liu SL (2010) Production of enterodiol from defatted flaxseeds through biotransformation by human intestinal bacteria. BMC Microbiol 10:115–123PubMedCrossRefGoogle Scholar
  15. 15.
    Robertson MC, Owens RE, Klindt J, Friesen HG (1984) Ovariectomy leads to a rapid increase in rat placental-lactogen secretion. Endocrinology 114:1805–1811PubMedCrossRefGoogle Scholar
  16. 16.
    Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, Li XJ (2005) The effects of curcumin on depressive-like behaviors in mice. Eur J Pharmacol 518:40–46PubMedCrossRefGoogle Scholar
  17. 17.
    Porsolt RD, Pichon ME, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732PubMedCrossRefGoogle Scholar
  18. 18.
    Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370PubMedCrossRefGoogle Scholar
  19. 19.
    Garcia R (2002) Stress, metaplasticity, and antidepressants. Curr Mol Med 2:629–638PubMedCrossRefGoogle Scholar
  20. 20.
    Machado DG, Bettio LE, Cunha MP, Capra JC, Dalmarco JB, Pizzolatti MG, Rodrigues AL (2009) Antidepressant-like effect of the extract of Rosmarinus officinalis in mice: involvement of the monoaminergic system. Prog Neuro Psychopharmacol Biol Psychiatry 33:642–650CrossRefGoogle Scholar
  21. 21.
    Chaves G, Moretti M, Castro AA, Dagostin W, Silva GG, Boeck CR, Quevedo J, Gavioli EC (2009) Effects of long-term ovariectomy on anxiety and behavioral despair in rats. Physiol Behav 97:420–425PubMedCrossRefGoogle Scholar
  22. 22.
    Xia X, Cheng G, Pan Y, Xia ZH, Kong LD (2007) Behavioral, neurochemical and neuroendocrine effects of the ethanolic extract from Curcuma longa L. in the mouse forced swimming test. J Ethnopharmacol 110:356–363PubMedCrossRefGoogle Scholar
  23. 23.
    Williams JW, Mulrow CD, Chiquette E, Noël PH, Aguilar C, Cornell J (2000) A systematic review of newer pharmacotherapies for depression in adults: evidence report summary. Ann Intern Med 132:743–756PubMedGoogle Scholar
  24. 24.
    Borriello SP, Setchell KDR, Axelson M, Lawson AM (1985) Production and metabolism of lignans by the human faecal flora. J Appl Microbiol 58:37–43CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer 2012

Authors and Affiliations

  • Ying-Feng Wang
    • 1
  • Zhi-Kun Xu
    • 1
  • Dong-Hui Yang
    • 4
  • Hai-Yan Yao
    • 2
  • Bao-Shan Ku
    • 2
  • Xiao-Qing Ma
    • 4
  • Cheng-Zhi Wang
    • 2
  • Shu-Lin Liu
    • 3
  • Shao-Qing Cai
    • 4
  1. 1.Department of ChemistryCapital Normal UniversityBeijingChina
  2. 2.School of Basic Medical SciencesPeking UniversityBeijingChina
  3. 3.School of Pharmaceutical SciencesHarbin Medical UniversityHarbinChina
  4. 4.State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking UniversityBeijingChina

Personalised recommendations