Journal of Natural Medicines

, Volume 66, Issue 2, pp 394–399 | Cite as

Hypoglycemic effects of clove (Syzygium aromaticum flower buds) on genetically diabetic KK-Ay mice and identification of the active ingredients

  • Minpei Kuroda
  • Yoshihiro Mimaki
  • Takayuki Ohtomo
  • Junji Yamada
  • Tozo Nishiyama
  • Tatsumasa Mae
  • Hideyuki Kishida
  • Teruo Kawada


Clove (Syzygium aromaticum flower buds) EtOH extract significantly suppressed an increase in blood glucose level in type 2 diabetic KK-Ay mice. In-vitro evaluation showed the extract had human peroxisome proliferator-activated receptor (PPAR)-γ ligand-binding activity in a GAL4-PPAR-γ chimera assay. Bioassay-guided fractionation of the EtOH extract resulted in the isolation of eight compounds, of which dehydrodieugenol (2) and dehydrodieugenol B (3) had potent PPAR-γ ligand-binding activities, whereas oleanolic acid (4), a major constituent in the EtOH extract, had moderate activity. Furthermore, 2 and 3 were shown to stimulate 3T3-L1 preadipocyte differentiation through PPAR-γ activation. These results indicate that clove has potential as a functional food ingredient for the prevention of type 2 diabetes and that 24 mainly contribute to its hypoglycemic effects via PPAR-γ activation.


Clove Syzygium aromaticum PPAR-γ ligand-binding activity Neolignan Triterpenoid 


  1. 1.
    Nicholas SB (1999) Lipid disorders in obesity. Curr Hypertens Rep 1:131–136PubMedCrossRefGoogle Scholar
  2. 2.
    Unger RH (2002) Lipotoxic diseases. Annu Rev Med 53:319–336PubMedCrossRefGoogle Scholar
  3. 3.
    Burn RP, Kim JB, Hu E, Altiok S, Spiegelman BM (1996) Adipocyte differentiation: a transcriptional regulatory cascade. Curr Opin Cell Biol 8:826–832CrossRefGoogle Scholar
  4. 4.
    Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839PubMedCrossRefGoogle Scholar
  5. 5.
    Kaplan F, Al-Majali K, Betteridge DJ (2001) PPARs, insulin resistance and type 2 diabetes. J Cardiovasc Risk 8:211–217PubMedCrossRefGoogle Scholar
  6. 6.
    Moller DE (2001) New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414:821–827PubMedCrossRefGoogle Scholar
  7. 7.
    Mae T, Kishida H, Nishiyama T, Tsukagawa M, Konishi E, Kuroda M, Mimaki Y, Sashida Y, Takahashi K, Kawada T, Nakagawa K, Kitahara M (2003) A licorice ethanolic extract with peroxisome proliferator-activated receptor-γ ligand-binding activity affects diabetes in KK-Ay mice, abdominal obesity in diet-induced obese C57BL mice and hypertension in spontaneously hypertensive rats. J Nutr 133:3369–3377PubMedGoogle Scholar
  8. 8.
    Nishiyama T, Mae T, Kishida H, Tsukagawa M, Mimaki Y, Kuroda M, Sashida Y, Takahashi K, Kawada T, Nakagawa K, Kitahara M (2005) Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-Ay mice. J Agric Food Chem 53:959–963PubMedCrossRefGoogle Scholar
  9. 9.
    Kuroda M, Mimaki Y, Nishiyama T, Mae T, Kishida H, Tsukagawa M, Takahashi K, Kawada T, Nakagawa K, Kitahara M (2005) Hypoglycemic effects of turmeric (Curcuma longa L. rhizomes) on genetically diabetic KK-Ay mice. Biol Pharm Bull 28:937–939PubMedCrossRefGoogle Scholar
  10. 10.
    Nakagawa K, Kishida H, Arai N, Nishiyama T, Mae T (2004) Licorice flavonoids suppress abdominal fat accumulation and increase in blood glucose level in obese diabetic KK-Ay mice. Biol Pharm Bull 27:1775–1778PubMedCrossRefGoogle Scholar
  11. 11.
    Aoki F, Honda S, Kishida H, Kitano M, Arai N, Tanaka H, Yokota S, Nakagawa K, Asakura T, Nakai Y, Mae T (2007) Suppression by licorice flavonoids of abdominal fat accumulation and body weight gain in high-fat diet-induced obese C57BL/6J mice. Biosci Biotechnol Biochem 71:206–214PubMedCrossRefGoogle Scholar
  12. 12.
    Kuroda M, Mimaki Y, Honda S, Tanaka H, Yokota S, Mae T (2010) Phenolics from Glycyrrhiza glabra roots and their PPAR-γ ligand-binding activity. Bioorg Med Chem 18:962–970PubMedCrossRefGoogle Scholar
  13. 13.
    Kuroda M, Mimaki Y, Sashida Y, Mae T, Kishida H, Nishiyama T, Tsukagawa M, Konishi E, Takahashi K, Kawada T, Nakagawa K, Kitahara M (2003) Phenolics with PPAR-γ ligand-binding activity obtained from licorice (Glycyrrhiza uralensis Roots) and ameliorative effects of glycyrin on genetically diabetic KK-Ay mice. Bioorg Med Chem Lett 13:4267–4272PubMedCrossRefGoogle Scholar
  14. 14.
    Shokeen P, Bala M, Singh M, Tandon V (2008) In vitro activity of eugenol, an active component from Ocimum sanctum, against multiresistant and susceptible strains of Neisseria gonorrhoeae. Int J Antimicrob Agents 32:174–179PubMedCrossRefGoogle Scholar
  15. 15.
    Suarez M, Bonilla J, De Diaz AMP, Achenbach H (1983) Dehydrodieugenols from Nectandra polita. Phytochemistry 22:609–610CrossRefGoogle Scholar
  16. 16.
    De Diaz AMP, Gottlieb HE, Gottlieb OR (1980) Dehydrodieugenols from Ocotea cymbarum. Phytochemistry 19:681–682CrossRefGoogle Scholar
  17. 17.
    Seo S, Tomita Y, Tori K (1975) Carbon-13 NMR spectra of urs-12-enes and application to structural assignments of components of Isodon japonicus Hara tissue cultures. Tetrahedron Lett 16:7–10CrossRefGoogle Scholar
  18. 18.
    Jayasinghe L, Wannigama GP, Macleod JK (1993) Triterpenoids from Anamirta cocculus. Phytochemistry 34:1111–1116CrossRefGoogle Scholar
  19. 19.
    Aguirre MC, Delporte C, Backhouse N, Erazo S, Letelier ME, Cassels BK, Silva X, Alegría S, Negrete R (2006) Topical anti-inflammatory activity of 2α-hydroxy pentacyclic triterpene acids from the leaves of Ugni molinae. Bioorg Med Chem 14:5673–5677PubMedCrossRefGoogle Scholar
  20. 20.
    Fujita M, Itokawa H, Sashida Y (1973) Studies on the components of Magnolia obovata Thunb. 3. Occurrence of magnolol and hõnokiol in M. obovata and other allied plants. Yakugaku Zasshi 93:429–434PubMedGoogle Scholar
  21. 21.
    Choi SS, Cha BY, Lee YS, Yonezawa T, Teruya T, Nagai K, Woo JT (2009) Magnolol enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells. Life Sci 84:908–914PubMedCrossRefGoogle Scholar
  22. 22.
    Kotani H, Tanabe H, Mizukami H, Makishima M, Inoue M (2010) Identification of a naturally occurring rexinoid, honokiol, that activates the retinoid X receptor. J Nat Prod 73:1332–1336PubMedCrossRefGoogle Scholar
  23. 23.
    Fakhrudin N, Ladurner A, Atanasov AG, Heiss EH, Baumgartner L, Markt P, Schuster D, Ellmerer EP, Wolber G, Rollinger JM, Stuppner H, Dirsch VM (2010) Computer-aided discovery, validation, and mechanistic characterization of novel neolignan activators of peroxisome proliferator-activated receptor gamma. Mol Pharmacol 77:559–566PubMedCrossRefGoogle Scholar
  24. 24.
    Spiegelman BM (1998) PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47:507–514PubMedCrossRefGoogle Scholar
  25. 25.
    Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4:263–273PubMedCrossRefGoogle Scholar
  26. 26.
    Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7:885–896PubMedCrossRefGoogle Scholar
  27. 27.
    Schmidt W, Pöll-Jordan G, Löffler G (1990) Adipose conversion of 3T3-Ll cells in a serum-free culture system depends on epidermal growth factor, insulin-like growth factor I, corticosterone, and cyclic AMP. J Biol Chem 265:15489–15495PubMedGoogle Scholar
  28. 28.
    Shukri R, Mohamed S, Mustapha NM (2010) Cloves protect the heart, liver and lens of diabetic rats. Food Chem 122:1116–1121CrossRefGoogle Scholar
  29. 29.
    Abdel-Wahhab MA, Aly SE (2005) Antioxidant property of Nigella sativa (black cumin) and Syzygium aromaticum (clove) in rats during aflatoxicosis. J Appl Toxicol 25:218–223PubMedCrossRefGoogle Scholar
  30. 30.
    Tanko Y, Mohammed A, Okasha MA, Umah AH, Magaji RA (2008) Anti-nociceptive and anti-inflammatory activities of ethanol extract of Syzygium aromaticum flower bud in wistar rats and mice. Afr J Trad CAM 5:209–212Google Scholar
  31. 31.
    Kim HM, Lee EH, Hong SH, Song HJ, Shin MK, Kim SH, Shin TY (1998) Effect of Syzygium aromaticum extract on immediate hypersensitivity in rats. J Ethnopharmacol 60:125–131PubMedCrossRefGoogle Scholar
  32. 32.
    Singh AK, Dhamanigi SS, Asad M (2009) Anti-stress activity of hydro-alcoholic extract of Eugenia caryophyllus buds (clove). Indian J Pharmacol 41:28–31PubMedCrossRefGoogle Scholar
  33. 33.
    Takahashi N, Kawada T, Goto T, Yamamoto T, Taimatsu A, Matsui N, Kimura K, Saito M, Hosokawa M, Miyashita K, Fushiki T (2002) Dual action of isoprenols from herbal medicines on both PPARγ and PPARα in 3T3-L1 adiopocytes and HepG2 hepatocytes. FEBS Lett 514:315–322PubMedCrossRefGoogle Scholar
  34. 34.
    Momose A, Fujita M, Ohtomo T, Umemoto N, Tanonaka K, Toyoda H, Morikawa M, Yamada J (2011) Regulated expression of acyl-CoA thioesterases in the differentiation of cultured rat brown adipocytes. Biochem Biophys Res Commun 404:74–78PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer 2011

Authors and Affiliations

  • Minpei Kuroda
    • 1
  • Yoshihiro Mimaki
    • 1
  • Takayuki Ohtomo
    • 1
  • Junji Yamada
    • 1
  • Tozo Nishiyama
    • 2
  • Tatsumasa Mae
    • 2
  • Hideyuki Kishida
    • 2
  • Teruo Kawada
    • 3
  1. 1.School of PharmacyTokyo University of Pharmacy and Life SciencesHachiojiJapan
  2. 2.Frontier Biochemical and Medical Research LaboratoriesKaneka CorporationTakasagoJapan
  3. 3.Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of AgricultureKyoto UniversityUjiJapan

Personalised recommendations