Advertisement

Journal of Natural Medicines

, Volume 65, Issue 2, pp 293–300 | Cite as

Evaluation of the taste of crude drug and Kampo formula by a taste-sensing system (4): taste of Processed Aconite Root

  • Naoko Anjiki
  • Junko Hosoe
  • Hiroyuki Fuchino
  • Fumiyuki Kiuchi
  • Setsuko Sekita
  • Hidekazu Ikezaki
  • Masayuki Mikage
  • Nobuo Kawahara
  • Yukihiro GodaEmail author
Original Paper

Abstract

It is difficult to describe the taste of Processed Aconite Root (PAR) because it contains toxic compounds, and tasting poses some risk to the examiner. Therefore, there is no description of the taste of PAR in the latest Japanese Pharmacopoeia, although the taste of crude drugs has been regulated as a criterion for judgment. In this study, we revealed the objective taste of PAR by using a taste-sensing system. The PAR samples examined were classified into four types by how the samples were processed: PAR1 processed by autoclaving; PAR2-a processed by autoclaving after rinsing in salt (sodium chloride) solution; PAR2-h processed by heating after rinsing in calcium chloride solution; PAR3 processed by treating with hydrated lime after rinsing in salt solution. The most characteristic taste factor of PAR is an aftertaste of cationic bitterness, which was detected in all PAR sample solutions, even at the concentration of 0.1 mg/ml. In addition, anionic bitterness and saltiness were detected in all sample solutions at 1 mg/ml. Furthermore, umami was detected in the PAR1, PAR2-a, and PAR3 sample solutions at 1 mg/ml. Detailing the analyses of the four taste factors on the four sample types, we found each type has its own characteristic taste pattern. On the basis of these results, we proposed a method for discriminating one PAR type from another by using the system.

Keywords

Processed Aconite Root Taste evaluation Japanese Pharmacopoeia Discrimination method Taste-sensing system using artificial lipid membrane sensor 

Notes

Acknowledgements

The authors are grateful to members of PAR-WG for kindly providing PAR samples and information for aconite processing. This work was supported in part by a Health and Labour Sciences Research Grant.

References

  1. 1.
    Matsumoto K (ed) (1984) Shinkoku-koho Shinnohonzokyo. Shobundo, Tokyo, pp 185–186Google Scholar
  2. 2.
    Hikino H, Yamada C, Nakamura K, Sato H, Ohizumi Y, Endo K (1977) Change of alkaloid composition and acute toxicity of Aconitum roots during processing. Yakugaku Zasshi 97:359–366PubMedGoogle Scholar
  3. 3.
    Kosuge T, Yokota M (1976) Studies on cardiac principle of aconite root. Chem Pharm Bull 24:176–178PubMedGoogle Scholar
  4. 4.
    Higashi K (1996) A case of postherpetic neuralgia successfuly controlled with 3 Kampo medicines which Bushi commonly. Jpn J Orient Med 47:267–270Google Scholar
  5. 5.
    Toriizuka K (ed) (2003) Monographs of pharmacological research on traditional herbal medicines. Ishiyaku Publishers, Inc., Tokyo, pp 401–413Google Scholar
  6. 6.
    Nakae H (2009) Efficacy of aconite tuber powder in patients with arthralgia and somatic pain. Kampo Med 60:81–85CrossRefGoogle Scholar
  7. 7.
    Chino A, Ishida A, Sekiya N, Ohno K, Hirasaki Y, Kasahara Y, Namiki T, Miyazaki M, Terasawa K (2010) A case of multiple intractable skin ulcers of bilateral legs due to arteriovenous fistula successfully treated with Kampo medicines. Kampo Med 61:325–330CrossRefGoogle Scholar
  8. 8.
    The Ministry of Health and Welfare Notification No. 65, March 15, 1955Google Scholar
  9. 9.
    The Ministry of Health and Welfare Notification No. 76, April 1, 1961Google Scholar
  10. 10.
    The Ministry of Health and Welfare Notification No. 163, April 1, 1966Google Scholar
  11. 11.
    Hikino H, Shiota S, Takahashi M, Murakami M (1983) Seasonal dynamics of the accumulation of aconite alkaloids in Aconitum carmichaeli roots. Jpn J Pharmacog 37:68–72Google Scholar
  12. 12.
    Kitagawa I, Chen ZL, Yoshihara M, Yoshikawa M (1984) Chemical studies on crude drug processing. IV. Aconiti Tuber (3), Quantitative determination of aconitine alkaloids in aconiti tuber by means of high performance liquid chromatography. Yakugaku Zasshi 104:867–872PubMedGoogle Scholar
  13. 13.
    Mori T, Murayama M, Bando H, Kawahara N (1991) Studies on the constituents of Aconitum species. XII. Syntheses of Jesaconitine derivatives and their analgestic and toxic activities. Chem Pharm Bull 39:379–383PubMedGoogle Scholar
  14. 14.
    Taki M, Omiya Y, Suzuki Y, Ikeda Y, Noguchi M, Matuba T, Kubo M, Niitu K, Komatsu Y, Okada M (1998) Quality and pharmacological investigation of processed aconiti tuber (TJ-3022). Nat Med 52:343–352Google Scholar
  15. 15.
    Nose M, Arai T, Zhao CH, Kojima K, Ogihara Y, Sekita S, Satake M (2001) Quantitative determination of aconitine alkaloids in aconiti tuber and Kampo prescription containing aconiti tuber commercially available. Nat Med 55:124–133Google Scholar
  16. 16.
    Taki M, Terabayashi S, Matsuba T, Sasaki H, Fukuchi M, Okada M (2002) Quality investigation of aconiti tuber in China and Japan. Nat Med 56:163–172Google Scholar
  17. 17.
    Okada K, Kawaguchi K (2004) The effect of tuberous root size on growth and alkaloid content of aconite (Aconitum subcuneatum). Nat Med 58:49–54Google Scholar
  18. 18.
    Taki M, Matsuba T, Fukuchi M, Aburada M, Okada M (2004) Comparison of seasonal variations on growth of Aconitum carmichaeli DEBX. and constituents of root tubers cultivated in Hokkaido and Ibaraki prefecture. Nat Med 58:55–63Google Scholar
  19. 19.
    Okada K, Kawaguchi K (2005) Change in chemical component characters within and among years of aconite. Nat Med 59:36–41Google Scholar
  20. 20.
    Nakamura Y, Yomura K, Kammoto T, Ishimatsu M, Kikuchi Y, Niitsu K, Terabayashi S, Takeda S, Sasaki H, Arimoto K, Okada M, Sekita S, Satake M, Goda Y (2006) Physicochemical quality evaluation of natural compounds isolated from crude drugs. Standard compounds for the official specification and testing method of “Processed Aconite Root” and “Powdered Processed Aconite Root” in the Japanese Pharmacopoeia. J Nat Med 60:285–294. doi: 10.1007/s11418-006-0005-y Google Scholar
  21. 21.
    The Ministry of Health, Labour and Welfare Ministerial Notification No. 461, December 28, 2004. http://jpdb.nihs.go.jp/jp14supp2/YAK2T.pdf
  22. 22.
    Sato M, Anetai M, Goda Y (2005) Analysis of organophosphorus pesticide residues in crude drugs. Pharm Regul Sci 36:83–97Google Scholar
  23. 23.
    Yamamoto K, Yamamoto T, Kondo S, Tamura M, Shibata Y, Umeda K, Akiba S, Kawakami T, Saito F, Sugimoto T, Isomi Y, Nakada T, Takao M, Nakashima K, Tahara M, Hayashi K, Sudo M, Nakanishi K, Isozaki O, Kawahara N, Goda Y (2005) Assay of ginsenoside Rg1 and ginsenoside Rb1 in ginseng and red ginseng by high-performance liquid chromatography. Pharm Regul Sci 36:211–222Google Scholar
  24. 24.
    Kawahara N, Kim IH, Goda Y (2006) Content of sulfur dioxides in herbal materials obtained form the Japanese market. Jpn J Food Chem 13:105–108Google Scholar
  25. 25.
    Sato M, Anetai M, Goda Y (2006) Organophosphorus pesticide residues in decoctions of crude drugs. Pharm Regul Sci 37:245–250Google Scholar
  26. 26.
    Kawahara N, Anjiki N, Kim IH, Mikage M, Goda Y (2007) Studies on the relationship between color and content of sulfur dioxides in crude drugs obtained from the Japanese market. Jpn J Food Chem 14:140–144Google Scholar
  27. 27.
    Maruyama T, Sugimoto N, Kuroyanagi M, Kim IH, Kamakura H, Kawasaki T, Fujita M, Shimada H, Yamamoto Y, Tada A, Yamazaki T, Goda Y (2007) Authentication and chemical study of Isodonis Herba and Isodonis extracts. Chem Pharm Bull 55:1626–1630PubMedCrossRefGoogle Scholar
  28. 28.
    Maruyama T, Kamakura H, Miyai M, Komatsu K, Kawasaki T, Fujita M, Shimada H, Yamamoto Y, Goda Y (2008) Authentication of the traditional medicinal plant Eleutherococcus senticosus by DNA and chemical analyses. Planta Med 74:787–789. doi: 10.1055/s-2008-1074537 PubMedCrossRefGoogle Scholar
  29. 29.
    Sato M, Anetai M, Kamakura H, Goda Y (2008) Analysis of organophosphorus pesticide residues in crude drugs (Part 2). Pharm Regul Sci 39:203–222Google Scholar
  30. 30.
    Tokumoto H, Shimomura Y, Katsuki S, Goda Y (2008) Morphological discrimination of Curcuma longa L. and Curcuma aromatica Salisb. Jpn J Pharmacog 62:54–65Google Scholar
  31. 31.
    Goda Y, Kawahara N, Kiuchi F, Hirakura K, Kikuchi Y, Nishimura H, Marumoto M, Kitazaki H (2009) A guanidine derivative from seeds of Plantago asiatica. J Nat Med 63:58–60. doi: 10.1007/s11418-008-0275-7 PubMedCrossRefGoogle Scholar
  32. 32.
    Kawahara N, Anjiki N, Hosoe J, Kim IH, Ikezaki H, Mikage M, Goda Y (2009) Studies on relationship between taste and content of sulfur dioxide in crude drugs obtained from the Japanese market. Pharm Regul Sci 40:129–135Google Scholar
  33. 33.
    Kondo K, Shiba M, Yotsuyanagi Y, Nishimura N, Maruyama T, Goda Y (2009) Discrimination between Atractylodes Rhizome (Byaku-jutsu) and Atractylodes lancea Rhizome (So-jutsu) by the PCR-RFLP analysis of ITS region on nrDNA. J Jpn Bot 84:356–359Google Scholar
  34. 34.
    Terabayashi S, Sakai E, Yamaji H, Kondo K, Kawahara N, Goda Y (2009) Authentication and standardization of botanical origin and morphology of Coix Fruit in the Japanese Pharmacopoeia. J Jpn Bot 84:77–84Google Scholar
  35. 35.
    Maruyama T, Miyai M, Kamakura H, Nakajima I, Kawasaki T, Komatsu K, Fujita M, Yamamoto Y, Shibata T, Goda Y (2010) The authentication and the purity test of Eleutherococcus Senticosus Rhizome based on the genetic approach. Jpn J Pharmacog 64:15–20Google Scholar
  36. 36.
    Sato M, Anetai M, Kamakura H, Goda Y (2010) Analysis of organophosphorus pesticide residues in crude drugs (Part 3). Pharm Med Dev Regul Sci 41:324–337Google Scholar
  37. 37.
    Maruyama T, Kondo K, Yotsuyanagi Y, Yamamoto Y, Kawasaki T, Shiba M, Terasaka K, Yamane M, Zhu S, Sakata K, Fujita M, Akiyama H, Nishimura N, Komatsu K, Mizukami H, Goda Y (2010) The inter-laboratory validation study for the purity test of crude drugs based on a PCR-RFLP. Jpn J Pharmacog 64:96–101Google Scholar
  38. 38.
    Anjiki N, Kawahara N, Goda Y (2005) Evaluation of the taste of Kampo formulae by taste-sensing system (1). Nat Med 59:164–170Google Scholar
  39. 39.
    Anjiki N, Suzuki A, Kawahara N, Goda Y (2006) Evaluation of the taste of a Kampo formula by a taste-sensing system (2), taste of Kakkonto. Jpn J Pharmacog 60:21–27Google Scholar
  40. 40.
    Anjiki N, Yoshino C, Kawahara N, Goda Y (2007) Evaluation of the taste of a Kampo formula by a taste-sensing system (3), the taste of Ryokeijutsukanto. Jpn J Pharmacog 61:6–13Google Scholar
  41. 41.
    The Ministry of Health, Labour and Welfare Ministerial Notification No. 285, March 31, 2006. http://jpdb.nihs.go.jp/jp15/YAKKYOKUHOU15.pdf
  42. 42.
    Toko K (2000) Biomimetic sensor technology. The Press Syndicate of The University of Cambridge, CambridgeCrossRefGoogle Scholar
  43. 43.
    Toko K, Uchida T (2007) Taste modification technology of food and medicine. CMC Publishing Co., Ltd., Tokyo, pp 219–252Google Scholar
  44. 44.
    Habara M, Toko K (2009) Biomimetic membrane for taste sensing, Chap. 6. In: Ariga K, Nalwa HS (eds) Bottom-up nanofabrication, vol 6. American Scientific Publishers, Los Angeles, pp 91–109Google Scholar
  45. 45.
    Ikezaki H, Taniguchi A, Toko K (1998) Increase in information by improvement of measuring method in a multichannel taste sensor. TIEE Japan 118-E:506–512Google Scholar
  46. 46.
    Pfaffmann C (1959) Neurophysiology. In: Field J (ed) Handbook of physiology, vol 1. American Physiological Society, Washington, DC, pp 507–534Google Scholar
  47. 47.
    Schutz HG, Pilgrim ES (1957) Differential sensitivity in gustation. J Exp Psychol 54:41–48PubMedCrossRefGoogle Scholar
  48. 48.
    Bai G, Yang Y, Shi Q, Liu Z, Zhang Q, Zhu YY (2008) Identification of higenamine in radix aconiti Lateralis Preparata as a beta2-adrenergic receptor agonist. Acta Pharmacol Sin 29:1187–1194PubMedCrossRefGoogle Scholar
  49. 49.
    Matsui M, Bando H, Murayama M, Miura T (1999) Constituent of “KAKO-BUSHI-MATSU” II Components of amino acid and sugars. Nat Med 53:313–315Google Scholar
  50. 50.
    Ohnishi S (1975) A spin-label study of biological membranes with special emphasis on calcium-induced lateral phase separation. Adv Biophys 8:35–82Google Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer 2010

Authors and Affiliations

  • Naoko Anjiki
    • 1
    • 2
  • Junko Hosoe
    • 3
  • Hiroyuki Fuchino
    • 4
  • Fumiyuki Kiuchi
    • 4
    • 5
  • Setsuko Sekita
    • 4
    • 6
  • Hidekazu Ikezaki
    • 1
  • Masayuki Mikage
    • 2
  • Nobuo Kawahara
    • 3
    • 4
  • Yukihiro Goda
    • 3
    Email author
  1. 1.Intelligent Sensor Technology, Inc.KanagawaJapan
  2. 2.Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaJapan
  3. 3.National Institute of Health SciencesTokyoJapan
  4. 4.Research Center for Medicinal Plant ResourcesNational Institute of Biomedical InnovationTsukubaJapan
  5. 5.Faculty of PharmacyKeio UniversityTokyoJapan
  6. 6.Faculty of Pharmaceutical Sciences at Kagawa CampusTokushima Bunri UniversitySanukiJapan

Personalised recommendations