Journal of Natural Medicines

, Volume 64, Issue 3, pp 336–345 | Cite as

Alleviation of ovariectomy-induced osteoporosis in rats by Panax notoginseng saponins

  • Yang Shen
  • Yong-Qi Li
  • Shao-Ping Li
  • Lin Ma
  • Li-Ju Ding
  • Hui Ji
Original Paper


To examine the effects of Panax notoginseng saponins (PNS), the main active components of Panax notoginseng, on ovariectomy-induced osteoporosis in rats. A total of 72 six-month-old female rats were randomly assigned to sham-operated group and five ovariectomized (OVX) groups: OVX with distilled water (5 ml/kg/day, p.o.), OVX with graded doses of PNS (75, 150, 300 mg/kg/day, p.o.), and OVX with nilestriol (1 mg/kg/week, p.o.). Animals were sacrificed after a 13-week treatment course. Compared with the OVX group, PNS administration prevented OVX-induced decrease in bone mineral density (BMD) of lumbar vertebrae and total femur, and significantly increased bone structural biomechanical properties. Improvements of BMD and biomechanical properties were accompanied by the beneficial changes of PNS on trabecular microarchitecture in the tibial metaphysis. PNS at the highest dose significantly prevent decrease in trabecular bone volume over bone total volume, trabecular number, trabecular thickness, connectivity density, and increase in trabecular separation and structure model index in OVX rats. The bone-modulating effects of PNS may be due to the increased bone formation and decreased bone resorption, as was evidenced by the elevated level of serum alkaline phosphatase and decreased level of urinary deoxypyridinoline. PNS treatment is able to enhance BMD, bone strength, and prevent the deterioration of trabecular microarchitecture without hyperplastic effect on uterus. Therefore, PNS might be a potential alternative medicine for the prevention and treatment of postmenopausal osteoporosis.


Panax notoginseng saponins Ovariectomy Osteoporosis Trabecular bone μCT 



Special thanks to Prof. Pu Zumao (China Pharmaceutical University) for her excellent technical assistance.


  1. 1.
    Chung HY, Sung B, Jung KJ, Zou Y, Yu BP (2006) The molecular inflammatory process in aging. Antioxid Redox Signal 8:572–581CrossRefPubMedGoogle Scholar
  2. 2.
    Weitzman MN, Pacifici R (2006) Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116:1186–1194CrossRefGoogle Scholar
  3. 3.
    Ragab AA, Nalepka JL, Bi Y, Greenfield EM (2002) Cytokines synergistically induce osteoclast differentiation: support by immortalized or normal calvarial cells. Am J Physiol Cell Physiol 283:C679–C687PubMedGoogle Scholar
  4. 4.
    Orija IB, Mehta A (2003) Hormone replacement therapy: current controversies. Clin Endocrinol 59:657CrossRefGoogle Scholar
  5. 5.
    Kang HJ, Ansbacher R, Hammoud MM (2002) Use of alternative and complementary medicine in menopause. Int J Gynecol Obstet 79:195–207CrossRefGoogle Scholar
  6. 6.
    Puel C, Mardon J, Agalias A, Davicco MJ, Lebecque P, Mazur A et al (2008) Major phenolic compounds in olive oil modulate bone loss in an ovariectomy/inflammation experimental model. J Agric Food Chem 56:9417–9422CrossRefPubMedGoogle Scholar
  7. 7.
    Park JA, Ha SK, Kang TH, Oh MS, Cho MH, Lee SY et al (2008) Protective effect of apigenin on ovariectomy-induced bone loss in rats. Life Sci 82:1217–1223CrossRefPubMedGoogle Scholar
  8. 8.
    Shiguemoto GE, Rossi EA, Baldissera V, Gouveia CH, de Valdez Vargas GM, de Andrade Perez SE (2007) Isoflavone-supplemented soy yoghurt associated with resistive physical exercise increase bone mineral density of ovariectomized rats. Maturitas 57:261–270CrossRefPubMedGoogle Scholar
  9. 9.
    Dontas I, Halabalaki M, Moutsatsou P, Mitakou S, Papoutsi Z, Khaldi L et al (2006) Protective effect of plant extract from Onobrychis ebenoides on ovariectomy-induced bone loss in rats. Maturitas 53:234–242CrossRefPubMedGoogle Scholar
  10. 10.
    Li L, Sheng Y, Zhang J, Guo D (2005) Determination of four active saponins of Panax notoginseng in rat feces by high-performance liquid chromatography. J Chromatogr Sci 43:421–425PubMedGoogle Scholar
  11. 11.
    Li L, Zhang JL, Sheng YX, Guo DA, Wang Q, Guo HZ (2005) Simultaneous quantification of six major active saponins of Panax notoginseng by high-performance liquid chromatography-UV method. J Pharm Biomed Anal 38:45–51CrossRefPubMedGoogle Scholar
  12. 12.
    Lee YJ, Jin YR, Lim WC, Park WK, Cho JY, Jang S et al (2003) Ginsenoside-Rb1 acts as a weak phytoestrogen in MCF-7 human breast cancer cells. Arch Pharm Res 26:58–63CrossRefPubMedGoogle Scholar
  13. 13.
    Chan RY, Chen WF, Dong A, Guo D, Wong MS (2002) Estrogen-like activity of ginsenoside Rg1 derived from Panax notoginseng. J Clin Endocrinol Metab 87:3691–3695CrossRefPubMedGoogle Scholar
  14. 14.
    Bae EA, Shin JE, Kim DH (2005) Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect. Bio Pharm Bull 28:1903–1908CrossRefGoogle Scholar
  15. 15.
    Zhao GR, Xiang ZJ, Ye TX, Yuan YJ, Guo ZX (2006) Antioxidant activities of Salvia miltiorrhiza and Panax notoginseng. Food Chem 99:767–774CrossRefGoogle Scholar
  16. 16.
    Rhule A, Navarro S, Smith JR, Shepherd DM (2006) Panax notoginseng attenuates LPS-induced pro-inflammatory mediators in RAW264.7 cells. J Ethnopharmacol 106:121–128CrossRefPubMedGoogle Scholar
  17. 17.
    Chang SH, Choi Y, Park JA, Jung DS, Shin J, Yang JH et al (2007) Anti-inflammatory effects of BT-201, an n-butanol extract of Panax notoginseng, observed in vitro and in a collagen-induced arthritis model. Clin Nutr 26:785–791PubMedGoogle Scholar
  18. 18.
    Gong YS, Chen J, Zhang QZ, Zhang JT (2006) Effect of 17β-oestradiol and ginsenodise on osteoporosis in ovariectomised rats. J Asian Nat Prod Res 8:649–656CrossRefPubMedGoogle Scholar
  19. 19.
    Zhao Y, Zou B, Shi Z, Wu Q, Chen GQ (2007) The effect of 3-hydroxybutyrate on the in vitro differentiation of murine osteoblast MC3T3-E1 and in vivo bone formation in ovariectomized rats. Biomaterials 28:3063–3073CrossRefPubMedGoogle Scholar
  20. 20.
    Nian H, Qin LP, Zhang QY, Zheng HC, Yu Y, Huang BK (2006) Antiosteoporotic activity of Er-Xian Decoction, a traditional Chinese herbal formula, in ovariectomized rats. J Ethnopharmacol 108:96–102CrossRefPubMedGoogle Scholar
  21. 21.
    Pastoureau P, Chomel A, Bonnet J (1995) Specific evaluation of localized bone mass and bone loss in the rat using dual-energy X-ray absorptiometry subregional analysis. Osteoporos Int 5:143–149CrossRefPubMedGoogle Scholar
  22. 22.
    Turner CH, Burr CB (1993) Basic mechanical measurements of bone: a tutorial. Bone 14:595–608CrossRefPubMedGoogle Scholar
  23. 23.
    Gowen M, Lazner F, Dodds R, Kapadia R, Field J, Tavaria M et al (1999) Cathepsin K knockout mice develop osteoporosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 14:1654–1663CrossRefPubMedGoogle Scholar
  24. 24.
    Devareddy L, Khalil DA, Smith BJ, Lucas EA, Soung do Y, Marlow DD (2006) Soy moderately improves microstructural properties without affecting bone mass in an ovariectomized rat model of osteoporosis. Bone 38:686–693CrossRefPubMedGoogle Scholar
  25. 25.
    Urasopon N, Hamada Y, Cherdshewasart W, Malaivijitnond S (2008) Preventive effects of Pueraria mirifica on bone loss in ovariectomized rats. Maturitas 59:137–148CrossRefPubMedGoogle Scholar
  26. 26.
    Dang ZC, van Bezooijen RL, Karperien M, Papapoulos SE, Lowik CW (2002) Exposure of KS483 cells to estrogen enhances osteogenesis and inhibits adipogenesis. J Bone Miner Res 17:394–405CrossRefPubMedGoogle Scholar
  27. 27.
    Joyner JM, Hutley LJ, Cameron DP (2001) Estrogen receptors in human preadipocytes. Endocrine 15:225–230CrossRefPubMedGoogle Scholar
  28. 28.
    Mosekilde L (1995) Assessing bone quality—animal models in preclinical osteoporosis research. Bone 17:343S–352SCrossRefPubMedGoogle Scholar
  29. 29.
    Peng ZQ, Vaananen HK, Zhang HX, Tuukkanen J (1997) Long-term effects of ovariectomy on the mechanical properties and chemical composition of rat bone. Bone 20:207–212CrossRefPubMedGoogle Scholar
  30. 30.
    Zhang YZ, Yu L, Ao M, Jin W (2006) Effect of ethanol extract of Lepidium meyenii Walp. on osteoporosis in ovariectomized rat. J Ethonopharmacol 105:274–279CrossRefGoogle Scholar
  31. 31.
    Goss PE, Qi S, Cheung AM, Hu H, Mendes M, Pritzker KP (2004) Effects of the steroidal aromatase inhibitor exemestane and the nonsteroidal aromatase inhibitor letrozole on bone and lipid metabolism in ovariectomized rats. Clin Cancer Res 10:5717–5723CrossRefPubMedGoogle Scholar
  32. 32.
    Ren P, Ji H, Shao Q, Chen X, Han J, Sun Y (2007) Protective effects of sodium daidzein sulfonate on trabecular bone in ovariectomized rats. Pharmacology 79:129–136CrossRefPubMedGoogle Scholar
  33. 33.
    Liu ZG, Zhang R, Li C, Ma X, Liu L, Wang JP et al (2009) The osteoprotective effect of Radix Dipsaci extract in ovariectomized rats. J Ethnopharmacol 123:74–81CrossRefPubMedGoogle Scholar
  34. 34.
    Bouxsein ML (2003) Mechanisms of osteoporosis therapy: a bone strength perspective. Clin Cornerstone 12:S13–S21CrossRefGoogle Scholar
  35. 35.
    Felsenberg D, Boonen S (2005) The bone quality framework: determinants of bone strength and their interrelationship, and implications for osteoporosis management. Clin Ther 27:1–11CrossRefPubMedGoogle Scholar
  36. 36.
    Silva MJ, Gibson LJ (1997) Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure. Bone 21:191–199CrossRefPubMedGoogle Scholar
  37. 37.
    Borah B, Gross GJ, Dufresne TE, Smith TS, Cockman MD, Chmielewski PA et al (2001) Three-dimensional microimaging (MRmicrol and microCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis. Anat Rec 265:101–110CrossRefPubMedGoogle Scholar
  38. 38.
    Tanaka M, Toyooka E, Kohno S, Ozawa H, Ejiri S (2003) Long-term changes in trabecular structure of aged rats alveolar bone after ovariectomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 95:495–502CrossRefPubMedGoogle Scholar
  39. 39.
    Laib A, Kumer JL, Majumdar S, Lane NE (2001) The temporal changes of trabecular architecture in ovariectomized rats assessed by MicroCT. Osteoporos Int 12:936–941CrossRefPubMedGoogle Scholar
  40. 40.
    Bhattacharya A, Rahman M, Sun D, Fernandes G (2007) Effect of fish oil on bone mineral density in aging C57BL/6 female mice. J Nutr Biochem 18:372–379CrossRefPubMedGoogle Scholar
  41. 41.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  42. 42.
    Davicco MJ, Remond B, Jabel S, Barlet JP (1992) Plasma osteocalcin concentrations in cows around parturition. The influence of a regular versus a very short dry period. Reprod Nutr Dev 32:313–319CrossRefPubMedGoogle Scholar
  43. 43.
    Chan BY, Lau KS, Jiang B, Kennelly EJ, Kronenberg F, Kung AW (2008) Ethanolic extract of Actaea racemosa (black cohosh) potentiates bone nodule formation in MC3T3-E1 preosteoblast cells. Bone 43:567–573CrossRefPubMedGoogle Scholar
  44. 44.
    Korach KS, Emmen JM, Walker VR, Hewitt SC, Yates M, Hall JM et al (2003) Update on animal models developed for analyses of estrogen receptor biological activity. J Steroid Biochem Mol Biol 86:387–391CrossRefPubMedGoogle Scholar
  45. 45.
    Lindberg MK, Moverare S, Skrtic S, Gao H, Dahlman-Wright K, Gustafsson JA et al (2003) Estrogen receptor (ER)-beta reduces ERalpha-regulated gene transcription, supporting a “ying yang” relationship between ERalpha and ERbeta in mice. Mol Endocrinol 17:203–208CrossRefPubMedGoogle Scholar
  46. 46.
    Rossouw JE, Anderson GL, Prention RL, LaCroix AZ, Koopergerg C, Stefanick ML et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results Form the Women’s Health Initiative randomized controlled trial. JAMA 288:321–333CrossRefPubMedGoogle Scholar
  47. 47.
    Jordan VC, Gapstur S, Morrow M (2001) Selective estrogen receptor modulation and reduction in risk of breast cancer, osteoporosis, and coronary heart disease. J Natl Cancer Inst 19:1449–1457CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer 2010

Authors and Affiliations

  • Yang Shen
    • 1
  • Yong-Qi Li
    • 1
  • Shao-Ping Li
    • 2
  • Lin Ma
    • 1
  • Li-Ju Ding
    • 1
  • Hui Ji
    • 1
  1. 1.Department of PharmacologyChina Pharmaceutical UniversityNanjingPeople’s Republic of China
  2. 2.Institute of Chinese Medical SciencesUniversity of MacauMacauPeople’s Republic of China

Personalised recommendations