Journal of Natural Medicines

, Volume 63, Issue 2, pp 232–239 | Cite as

Antiplasmodial and antitrypanosomal activity of plants from the Kingdom of Saudi Arabia

  • Essam Abdel-SattarEmail author
  • Fathalla M. Harraz
  • Soliman M. A. Al-Ansari
  • Sahar El-Mekkawy
  • Chikara Ichino
  • Hiroaki Kiyohara
  • Kazuhiko Otoguro
  • Satoshi Omura
  • Haruki Yamada
Natural Resource Letter


The antiplasmodial and antitrypanosomal activity of the methanol extracts of 42 plants collected from the Kingdom of Saudi Arabia and some fractions obtained thereof were evaluated. The antiplasmodial activity was tested in vitro against chloroquine-resistant strain (K1) and sensitive strain (FCR3), and the antitrypanosomal activity was tested in vitro against Trypanosoma brucei brucei GUTat 3.1 strain. For host cells, the cytotoxicity of the active extracts was also evaluated against the MRC5 human cell line. Only extracts of three samples demonstrated good antiplasmodial activity (IC50 < 12.5 and > 1.56 μg/ml, score 2), the methanol extracts of Lycium shawii, Heliotropium zeylanicum and the petroleum ether-soluble fraction of the methanol extract of Caralluma tuberculata, while extracts of the remaining 42 plants were inactive (IC50 > 12.5 μg/ml, score 1). As for the antitrypanosomal activity, the methanol extract of Solanum schimperianum demonstrated the highest activity (IC50 0.061 μg/ml), followed by the petroleum ether-soluble fraction of the methanol extract of C. tuberculata (IC50 0.5 μg/ml). The chloroform-soluble fraction of the methanol extract of C. tuberculata was moderately active (IC50 3.5 μg/ml), with low cytotoxicity (IC50 62.6 μg/ml) and moderate selectivity index (SI 17.9). The methanolic extracts of 34 plants showed good activity with score 2 (IC50 < 12.5 and > 1.56 μg/ml), while the extracts of seven plants were inactive (IC50 > 12.5 μg/ml, score 1).


Screening Antimalarial activity Antitrypanosomal activity Cytotoxicity 



We gratefully acknowledge the Deanship of Scientific Research, King Abdulaziz University, KSA, for funding project no. 427/041 and the Japanese Program for Research and Training in Tropical Diseases (TDR/WHO, antimalarial project) and Drugs for Neglected Diseases initiative (DNDi, antitrypanosoma project) for grant funding and a grant for All Kitasato Project Study (AKPS). The authors wish to thank Dr. Abdulaziz Fayed, Professor of Plant Taxonomy, College of Science, Assuit University, Egypt, for the identification of plant materials, Ms. Aki Ishiyama, Ms. Hitomi Sekiguchi, Ms. Miyuki Namatame, and Ms. Aki Nishihara for their technical assistance, and Prof. T. Kinoshita (Osaka University, Japan) for the generous gift of Trypanosoma brucei brucei S427 strain.


  1. 1.
    Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217PubMedCrossRefGoogle Scholar
  2. 2.
    Rogers DJ, Randolph SE, Snow RW, Hay SI (2002) Satellite imagery in the study and forecast of malaria. Nature 415:710–715PubMedCrossRefGoogle Scholar
  3. 3.
    Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW (2004) The global distribution and population at risk of malaria: past, present and future. Lancet Infect Dis 4:327–336PubMedCrossRefGoogle Scholar
  4. 4.
    Phillipson JD, Wright CW (1991) Can ethnopharmacology contribute to the development of antimalarial agents? J Ethnopharmacol 32:155–165PubMedCrossRefGoogle Scholar
  5. 5.
    Kayser O, Kiderlen AF, Croft SL (2003) Natural products as antiparasitic drugs. Parasitol Res 90:S55–S62PubMedCrossRefGoogle Scholar
  6. 6.
    Khaw M, Panosian CB (1995) Human antiprotozoal therapy: past, present, and future. Clin Microbiol Rev 8:427–439PubMedGoogle Scholar
  7. 7.
    Gross CP, Anderson GF, Powe NR (1999) The relation between funding by the National Institutes of Health and the burden of disease. N Engl J Med 340:1881–1887PubMedCrossRefGoogle Scholar
  8. 8.
    Remme JH, Blas E, Chitsulo L, Desjeux PM, Engers HD, Kanyok TP, Kayondo JFK, Kioy DW, Kumaraswami V, Lazdins JK, Nunn PP, Oduola A, Ridley R, Toure Y, Zicker F, Morel CMM (2002) Strategic emphases for tropical diseases research: a TDR perspective. Trends Microbiol 10:435–440PubMedCrossRefGoogle Scholar
  9. 9.
    WHO. Control and surveillance of African trypanosomiasis (1998) Report of a WHO Expert Committee. World Health Organization Technical Report Series 881, vol I-VI, pp 1–114Google Scholar
  10. 10.
    Barrett MP (1999) The fall and rise of sleeping sickness. The Lancet 353:1113–1114CrossRefGoogle Scholar
  11. 11.
    Docampo R, Moreno SN (2003) Current chemotherapy of human African trypanosomiasis. Parasitol Res 90(Suppl 1):S10–S13PubMedGoogle Scholar
  12. 12.
    Pepin J, Milord F (1994) The treatment of human African trypanosomiasis. Adv Parasitol 33:1–47PubMedCrossRefGoogle Scholar
  13. 13.
    Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193:673–677PubMedCrossRefGoogle Scholar
  14. 14.
    Makler MT, Ries JM, Williams JA, Bancroft JE, Piper RC, Gibbins BL, Hinrichs DJ (1993) Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am J Med Hyg 48:739–741Google Scholar
  15. 15.
    Räz B, Iten M, Grether-Bühler Y, Kaminsky R, Brun R (1997) The Alamar Blue® assay to determine drug sensitivity of African trypanosomes (T. b. rhodesiense and T. b. gambiense) in vitro. Acta Trop 68:139–147PubMedCrossRefGoogle Scholar
  16. 16.
    Yabu Y, Koide T, Ohta N, Nose M, Ogihara Y (1998) Continuous growth of bloodstream forms of Trypanosoma brucei brucei in an axenic culture system containing a low concentration of serum. Southeast Asian J Trop Med Public 29:591–592Google Scholar
  17. 17.
    Mossman T (1983) Rapid colorimetric assay for cellular growth and survival. Application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  18. 18.
    Otoguro K, Komiyyama K, Omura S, Tyson CA (1991) An in vitro cytotoxicity assay using rat hepatocytes and MTT and coomassie blue dye as indicators. ATLA 19:352–360Google Scholar
  19. 19.
    Khan MOF (2007) Trypanothione Reductase: a viable chemotherapeutic target for antitrypanosomal and antileishmanial drug design. Drug Target Insights 1:129–146Google Scholar
  20. 20.
    Ponasik JA, Strickland C, Faerman C, Sawides S, Karplus PA, Ganem B (1995) Kukoamine A and other hydrophobic acylpolyamines: potent and selective inhibitors of Crithidia fasciculata trypanothione reductase. Biochem J 311:371–375PubMedGoogle Scholar
  21. 21.
    Vieira NC, Espindola LS, Santana JM, Veras ML, Pessoa ODL, Pinheiro SM, de Araujo RM, Limac MAS, Silveira ER (2008) Trypanocidal activity of a new pterocarpan and other secondary metabolites of plants from Northeastern Brazil flora. Bioorg Med Chem 16:1676–1682PubMedCrossRefGoogle Scholar
  22. 22.
    Hansel R, Huang JT, Rosenberg D (1975) Two withanolides from Lycium chinense. Arch Pharm (Weinheim) 308:653–654CrossRefGoogle Scholar
  23. 23.
    Cui X-R, Tsukada M, Suzuki N, Shimamura T, Gao L, Koyanagi J, Komada F, Saito S (2007) Comparison of the cytotoxic activities of naturally occurring hydroxyanthraquinones and hydroxynaphthoquinones. Eur J Med Chem 20:1–10Google Scholar
  24. 24.
    Chataing B, Concepcion JL, Lobaton R, Usubillaga A (1998) Inhibition of Trypanosoma cruzi growth in vitro by Solanum alkaloids: a comparison with ketoconazole. Planta Med 64:31–36PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer 2008

Authors and Affiliations

  • Essam Abdel-Sattar
    • 1
    Email author
  • Fathalla M. Harraz
    • 1
  • Soliman M. A. Al-Ansari
    • 2
  • Sahar El-Mekkawy
    • 3
  • Chikara Ichino
    • 4
  • Hiroaki Kiyohara
    • 4
  • Kazuhiko Otoguro
    • 5
  • Satoshi Omura
    • 6
  • Haruki Yamada
    • 4
  1. 1.Department of Natural Products, Faculty of PharmacyKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  2. 2.Department of Microbiology, Faculty of Medicine and Allied SciencesKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  3. 3.Department of Chemistry of Natural CompoundsNational Research CentreDokki, GizaEgypt
  4. 4.Kitasato Institute for Life SciencesKitasato UniversityTokyoJapan
  5. 5.Research Centre for Tropical DiseasesThe Kitasato InstituteTokyoJapan
  6. 6.The Kitasato InstituteTokyoJapan

Personalised recommendations