Journal of Natural Medicines

, Volume 63, Issue 1, pp 102–104

Sesquiterpenes from Curcuma comosa

  • Yang Qu
  • Fengming Xu
  • Seikou Nakamura
  • Hisashi Matsuda
  • Yutana Pongpiriyadacha
  • Lijun Wu
  • Masayuki Yoshikawa
Natural Medicine Note

Abstract

From the dried rhizomes of Curcumacomosa cultivating in Thailand, 26 known sesquiterpenes were isolated: zederone, zederone epoxide, furanodienone, isofuranodienone, 1(10)Z,4Z-furanodiene-6-one, glechomanolide, dehydrocurdione, neocurdione, curdione, 7α-hydroxyneocurdione, 7β-hydroxycurdione, germacrone-1(10),4-diepoxide, germacrone, 13-hydroxygermacrone, curzerenone, curcolonol, alismol, alismoxide, zedoarondiol, isozedoarondiol, procurcumenol, isoprocurcumenol, aerugidiol, zedoalactone B, curcumenone, and curcumadione. Their structures were elucidated on the basis of physicochemical evidence. Among them, glechomanolide, curzerenone, curcolonol, alismol, alismoxide, and zedoarondiol showed no significant optical activities, so they may be artifact products during the isolation or drying process.

Keywords

Curcuma comosa Zingiberaceae Sesquiterpenes 

References

  1. 1.
    Sodsai A, Piyachaturawat P, Sophasan S, Suksamrarn A, Vongsakul M (2007) Suppression by Curcuma comosa Roxb. of pro-inflammatory cytokine secretion in phorbol-12-myristate-13-acetate stimulated human mononuclear cells. Int Immunopharmacol 7:524–531PubMedCrossRefGoogle Scholar
  2. 2.
    Jantaratnotai N, Utaisincharoen P, Piyachaturawat P, Chongthammakun S, Sanvarinda Y (2006) Inhibitory effect of Curcuma comosa on NO production and cytokine expression in LPS-activated microglia. Life Sci 78:571–577PubMedCrossRefGoogle Scholar
  3. 3.
    Suksamrarn A, Eiamong S, Piyachaturawat P, Byrne LT (1997) A phloracetophenone glucoside with choleretic activity from Curcuma comosa. Phytochemistry 45:103–105CrossRefGoogle Scholar
  4. 4.
    Yoshikawa M, Morikawa T, Nakano K, Pongpiriyadacha Y, Murakami T, Matsuda H (2002) Characterization of new sweet triterpene saponins from Albizia myriophylla. J Nat Prod 65:1638–1642PubMedCrossRefGoogle Scholar
  5. 5.
    Matsuda H, Pongpiriyadacha Y, Morikawa T, Ochi M, Yoshikawa M (2003) Gastroprotective effects of phenylpropanoids from the rhizomers of Alpinia galanga in rats: structural requirements and mode of action. Eur J Pharmacol 471:59–67PubMedCrossRefGoogle Scholar
  6. 6.
    Matsuda H, Morikawa T, Managi H, Yoshikawa M (2003) Antiallergic principles from Alpinia galanga: structural requirements of phenylpropanoids for inhibition of degranulation and release of TNF-α and IL-4 in RBL-2H3 cells. Bioorg Med Chem Lett 13:3197–3202PubMedCrossRefGoogle Scholar
  7. 7.
    Morikawa T, Kishi A, Pongpiriyadacha Y, Matsuda H, Yoshikawa M (2003) Structures of new friedelane-type triterpenes and eudesmane-type sesquiterpene and aldose reductase inhibitors from Salacia chinensis. J Nat Prod 66:1191–1196PubMedCrossRefGoogle Scholar
  8. 8.
    Kishi A, Morikawa T, Matsuda H, Yoshikawa M (2003) Structures of new friedelane- and norfriedelane-type triterpenes and polyacylated eudesmane-type sesquiterpene from Salacia chinensis Linn. (S. prinoides DC., Hippocrateaceae) and radical scavenging activities of principal constituents. Chem Pharm Bull 51:1051–1055PubMedCrossRefGoogle Scholar
  9. 9.
    Yoshikawa M, Pongpiriyadacha Y, Kishi A, Kageura T, Wang T, Morikawa T, Matsuda H (2003) Biological activities of Salacia chinensis originating in Thailand: the quality evaluation guided by α-glucosidase inhibitory activity. Yakugaku Zasshi 123:871–880PubMedCrossRefGoogle Scholar
  10. 10.
    Matsuda H, Tewtrakul S, Morikawa T, Nakamura A, Yoshikawa M (2004) Anti-allergic principles from Thai zedoary: structural requirements of curcuminoids for inhibition of degranulation and effect on the release of TNF-α and IL-4 in RBL-2H3 cells. Bioorg Med Chem 12:5891–5898PubMedCrossRefGoogle Scholar
  11. 11.
    Morikawa T, Matsuda H, Yamaguchi I, Pongpiriyadacha Y, Yoshikawa M (2004) New amides and gastroprotective constituents from the fruit of Piper chaba. Planta Med 70:152–159PubMedCrossRefGoogle Scholar
  12. 12.
    Matsuda H, Morikawa T, Xu F, Ninomiya K, Yoshikawa M (2004) New isoflavones and pterocarpane with hepatoprotective activity from the stems of Erycibe expansa. Planta Med 70:1201–1209PubMedCrossRefGoogle Scholar
  13. 13.
    Matsuda H, Ando S, Morikawa T, Kataoka S, Yoshikawa M (2005) Structure-activity relationships of 1′S-1′-acetoxychavicol acetate for inhibitory effect on NO production in lipopolysaccharide-activated mouse peritoneal macrophages. Bioorg Med Chem Lett 15:1949–1953PubMedCrossRefGoogle Scholar
  14. 14.
    Ando S, Matsuda H, Morikawa T, Yoshikawa M (2005) 1′S-1′-acetoxychavicol acetate as a new type inhibitor of interferon-β production in lipopolysaccharide- activated mouse peritoneal macrophages. Bioorg Med Chem 13:3289–3294PubMedCrossRefGoogle Scholar
  15. 15.
    Morikawa T, Xu F, Matsuda H, Yoshikawa M (2006) Structures of new flavonoids, erycibenins D, E, and F, and NO production inhibitors from Erycibe expansa originating in Thailand. Chem Pharm Bull 54:1530–1534PubMedCrossRefGoogle Scholar
  16. 16.
    Matsuda H, Yoshida K, Miyagawa K, Asao Y, Takayama S, Nakashima S, Xu F, Yoshikawa M (2007) Rotenoids and flavonoids with anti-invasion of HT1080, anti-proliferation of U937, and differentiation-inducing activity in HL-60 from Erycibe expansa. Bioorg Med Chem 15:1539–1546PubMedCrossRefGoogle Scholar
  17. 17.
    Yoshikawa M, Xu F, Morikawa T, Pongpiriyadacha Y, Nakamura S, Asao Y, Kumahara A, Matsuda H (2007) Medicinal flowers. XII. New spirostane-type steroid saponins with antidiabetogenic activity from Borassus flabellifer. Chem Pharm Bull 55:308–316PubMedCrossRefGoogle Scholar
  18. 18.
    Matsuda H, Morikawa T, Ninomiya K, Yoshikawa M (2001) Absolute stereostructure of carabrane-type sesquiterpene and vasorelaxant-active sesquiterpenes from Zedoariae Rhizoma. Tetrahedron 57:8443–8453CrossRefGoogle Scholar
  19. 19.
    Hikino H, Konno C, Agatsuma K, Takemoto T, Horibe I, Tori K, Oeyama M, Takeda K (1975) Sesquiterpenoids. Part XLVII. Structure, configuration, conformation, and thermal rearrangement of furanodienone, isofuranodienone, curzerenone, epicurzerenone, and pyrocurzererenone, sesquiterpenoids of Curcuma zedoaria. J C S, Perkin I:478–484Google Scholar
  20. 20.
    Brieskorn CH, Noble P (1983) Furanosesquiterpenes from the essential oil of myrrh. Phytochemistry 22:1207–1211CrossRefGoogle Scholar
  21. 21.
    Yoshikawa M, Matsuda H (2002) Terpenoid constituents of Alismatis Rhizoma—structure, biological activity, and chemical change of terpenoids during processing. J Trad Med 19:119–128Google Scholar
  22. 22.
    Hikino H, Takahashi H, Sakurai Y, Takemoto T, Bhacca NS (1966) Structure of zederone. Chem Pharm Bull 14:550–551Google Scholar
  23. 23.
    Hano Y, Akiyama A, Nomura T (1997) Stereochemistries and CD spectra of two new sesquiterpenoids from the fresh rhizoma of cultivated Curcuma sp. in Miyakojima island. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 39:511–516Google Scholar
  24. 24.
    Gao J, Xie J, Iitaka Y, Inayama S (1989) The stereostructure of wenjine and related (1S, 10S), (4S, 5S)-germacrone-1(10), 4-diepoxide isolated from Curcuma wenyujin. Chem Pharm Bull 37:233–236Google Scholar
  25. 25.
    Syu W, Shen C, Non M, Ou J, Lee G, Sun C (1998) Cytotoxicity of curcuminoids and some novel compounds from Curcuma zedoaria. J Nat Prod 61:1531–1534PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer 2008

Authors and Affiliations

  • Yang Qu
    • 1
  • Fengming Xu
    • 2
  • Seikou Nakamura
    • 2
  • Hisashi Matsuda
    • 2
  • Yutana Pongpiriyadacha
    • 3
  • Lijun Wu
    • 1
  • Masayuki Yoshikawa
    • 2
  1. 1.School of Traditional Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyangChina
  2. 2.Kyoto Pharmaceutical UniversityKyotoJapan
  3. 3.Rajamangala University of Technology SrivijayaNakhon Si ThammaratThailand

Personalised recommendations