Journal of Natural Medicines

, Volume 62, Issue 2, pp 195–198 | Cite as

Oligostilbenoids from Shorea gibbosa and their cytotoxic properties against P-388 cells

  • Haryoto Saroyobudiono
  • Lia D. Juliawaty
  • Yana M. Syah
  • Sjamsul A. Achmad
  • Euis H. HakimEmail author
  • Jalifah Latip
  • Ikram M. Said


A new oligostilbenoid derivative, diptoindonesin F (1), along with five known oligostilbenoids, (−)-ampelopsin A (2), (−)-α-viniferin (3), ampelopsin E (4), (−)-vaticanol B (5), and (−)-hemsleyanol D (6), were isolated from the methanol extract of the tree bark of Shorea gibbosa. The structure of the new compound was determined based on the analysis of spectroscopic data, including UV, IR, NMR 1-D and 2-D, and mass spectra. Cytotoxic properties of the isolated oligostilbenoids were evaluated against murine leukemia P-388 cells with the result that compounds 2 and 4 showed the highest cytotoxicity.


Diptoindonesin F Oligostilbenoid Shorea gibbosa Dipterocarpaceae Cytotoxicity P-388 cells 



We thank Dr. H. Karasawa and Dr. A. Kusai from JEOL, Japan, for mass spectra measurements. We also thank the Herbarium Bogoriense, Bogor, Indonesia, for identification of the plant specimen.


  1. 1.
    Sotheeswaran S, Pasupathy V (1993) Distribution of resveratrol oligomers in plants. Phytochemistry 32:1083–1092CrossRefGoogle Scholar
  2. 2.
    Seo EK, Douglas KA (2000) Bioactive constituents of the family Dipterocarpaceae. In: Atta-ur-Rahman (ed) Studies in natural products chemistry. vol 23 (Bioactive Natural Products (Part D)), Elsevier, pp 531–561Google Scholar
  3. 3.
    Cichewicz RH, Kouzi SA (2002) Resveratrol oligomers: structure, chemistry, and biological activity. In: Atta-ur-Rahman (ed) Studies in natural products chemistry. vol 26 (Bioactive Natural Products, (Part G)), Elsevier, pp 507–579Google Scholar
  4. 4.
    Aminah NS, Achmad SA, Aimi N, Ghisalberti EL, Hakim EH, Kitajima M, Syah YM, Takayama H (2002) Diptoindonesin A, a new C-glucoside of ε-viniferin from Shorea seminis (Dipterocarpaceae). Fitoterapia 73:501–507PubMedCrossRefGoogle Scholar
  5. 5.
    Syah YM, Aminah NS, Hakim EH, Kitajima M, Takayama H, Achmad SA (2003) Two Oligostilbenoids cis- and trans-diptoindonesian B from Dryobalanops oblongifolia. Phytochemistry 63:913–917PubMedCrossRefGoogle Scholar
  6. 6.
    Sahidin, Hakim EH, Juliawaty LD, Syah YM, Din LB, Ghisalberti EL, Latip J, Said IM, Achmad SA (2005) Cytotoxic properties of oligostilbenoids from the tree bark of Hopea dryobalanoides. Z Naturforsch 60c:723–727Google Scholar
  7. 7.
    Muhtadi, Hakim EH, Juliawaty LD, Syah YM, Achmad SA, Latif J, Ghisalberti EL (2006) Cytotoxic resveratrol oligomers from the tree bark of Dipterocarpus hasseltii (Dipterocarpaceae). Fitoterapia 77:550–555PubMedCrossRefGoogle Scholar
  8. 8.
    Oshima Y, Ueno Y, Hikino H, Yang LL, Yen KY (1990) Ampelopsins A, B and C, new oligostilbenes of Ampelopsis brevipedunculata var. hancei. Tetrahedron 46:5121–5126CrossRefGoogle Scholar
  9. 9.
    Pryce RJ, Langcake P (1977) (−)-α-Viniferin: an antifungal resveratrol trimer from grapevines. Phytochemistry 16:1452–1454CrossRefGoogle Scholar
  10. 10.
    Oshima Y, Ueno Y, (1993) Ampelopsins D, E, H, and cis-ampelopsin E, oligostilbenes from Ampelopsis brevipedunculata var. hancei roots. Phytochemistry 33:179–82CrossRefGoogle Scholar
  11. 11.
    Tanaka T, Ito T, Nakaya K, Iinuma M, Riswan S (2000) Oligostilbenoids in the stem bark of Vatica rassak. Phytochemistry 54:63–69PubMedCrossRefGoogle Scholar
  12. 12.
    Tanaka T, Ito T, Nakaya K-I, Iinuma M, Takahashi Y, Naganawa H, Riswan S (2001) Six new heterocyclic stilbene oligomers from stem bark of Shorea hemsleyana. Heterocycles 55:729–740CrossRefGoogle Scholar
  13. 13.
    Kawabata J, Fukushi E, Hara M, Mizutani J (1992) Detection of connectivity between equivalent carbons in a C2 molecule using isotopomeric asymmetry: Identification of hopeaphenol in Carex pumila. Magn Reson Chem 30:6–10CrossRefGoogle Scholar
  14. 14.
    Yan KX, Terashima K, Takaya Y, Niwa M (2001) A novel oligostilbene named (+)-viniferol A from the stem bark of Vitis vinifera ‘Kyohou’. Tetrahedron 57:2711–2715CrossRefGoogle Scholar
  15. 15.
    Ito T, Tanaka T, Ido Y, Nakaya KI, Iinuma M, Riswan S (2000) Four new stilbenoid C-glucosides isolated from the stem bark of Shorea hemsleyana. Chem Pharm Bull 48:1959–1963PubMedGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer 2007

Authors and Affiliations

  • Haryoto Saroyobudiono
    • 1
  • Lia D. Juliawaty
    • 1
  • Yana M. Syah
    • 1
  • Sjamsul A. Achmad
    • 1
  • Euis H. Hakim
    • 1
    Email author
  • Jalifah Latip
    • 2
  • Ikram M. Said
    • 2
  1. 1.Natural Products Research Group, Department of ChemistryBandung Institute of TechnologyBandungIndonesia
  2. 2.School of Chemistry and Food Technology, Faculty of Science and TechnologyNational University of MalaysiaBangiMalaysia

Personalised recommendations