Journal of Natural Medicines

, Volume 61, Issue 4, pp 367–370 | Cite as

Biologically active gangliosides from echinoderms

  • Ryuichi Higuchi
  • Masanori Inagaki
  • Koji Yamada
  • Tomofumi Miyamoto
Review

Abstract

This review will summarize the authors’ studies on the structure and the biological activities of the gangliosides from echinoderms. Over 40 gangliosides have been obtained and characterized from 13 kinds of echinoderms, namely, Acanthaster planci, Asterina pectinifera, Asterias amurensis versicolor, Astropecten latespinosus, Luidia maculata, Linckia laevigata (starfish), Cucumaria echinata, Holothuria pervicax, H. leucospilota, Stichopus japonicus, S. chloronotus (sea cucumber), Comanthus japonica (feather star) and Ophiocoma scolopendrina (brittle star). The structural feature of the echinoderms gangliosides was their unique carbohydrate moieties. The biological property of the gangliosides from echinoderms, taking up in this review, was mainly neuritogenic activity.

Keywords

Echinoderms Gangliosides Glycosphingolipids Neuritogenic activity 

Notes

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Science, Sports and Technology, Japan, and a grant from the Japan Society for the Promotion of Science, which are gratefully acknowledged.

References

  1. 1.
    Hakomori S, Igarashi Y (1995) Functional role of glycosphingolipids in cell recognition and signaling. J Biochem 118:1091–1103PubMedGoogle Scholar
  2. 2.
    Nobile-Orazio E, Carpo M, Scarlato G (1994) Gangliosides. Their role in clinical neurology. Drugs 47:576–585PubMedGoogle Scholar
  3. 3.
    Sugita M (1979) Studies on the glycosphingolipids of the starfish Asterina pectinifera. J Biochem 86:765–772PubMedGoogle Scholar
  4. 4.
    Kubo H, Irie A, Inagaki F, Hoshi M (1990) Gangliosides from the eggs of the sea urchin Anthocidaris crassispina. J Biochem 108:185–192PubMedGoogle Scholar
  5. 5.
    Smirnova GP, Kochetkov NK (1980) A novel sialoglycolipid from hepatopancreas of the starfish Patiria pectinifera. Biochim Biophys Acta 618:486–495PubMedGoogle Scholar
  6. 6.
    Kawatake S, Inagaki M, Miyamoto T, Isobe R, Higuchi R (1999) Biologically active glycosides from asteroidea 38. Glycosphingolipids from the starfish Luidia maculata 2. Isolation and structure of a GM3-type ganglioside molecular species. Eur J Org Chem 1999:765–769Google Scholar
  7. 7.
    Kawano Y, Higuchi R, Komori T (1990) Biologically active glycosides from asteroidea XIX. Glycosphingolipids from the starfish Acanthaster planci 4. Isolation and structure of five new gangliosides. Liebigs Ann Chem 1990:43–50Google Scholar
  8. 8.
    Miyamoto T, Inagaki M, Isobe R, Tanaka Y, Higuchi R, Iha M, Teruya K (1997) Biologically active glycosides from asteroidea 36. Re-examination of the structure of acanthaganglioside C, and the identification of three minor acanthagangliosides F, G and H. Liebigs Ann 1997:931–936Google Scholar
  9. 9.
    Higuchi R, Inagaki K, Natori T, Komori T, Kawajiri S (1991) Biologically active glycosides from asteroidea XXV. Glycosphingolipids from the starfish Asterina pectinifera 2. Structure of three ganglioside molecular species and a homogeneous ganglioside, and biological activity of the ganglioside. Liebigs Ann Chem 1991:1–10Google Scholar
  10. 10.
    Higuchi R, Matsumoto S, Fujita M, Komori T, Sasaki T (1995) Biologically active glycosides from asteroidea XXXII. Glycosphingolipids from the starfish Astropecten latespinosus 2. Structure of two new ganglioside molecular species and biological activity of the ganglioside. Liebigs Ann 1995:545–550Google Scholar
  11. 11.
    Higuchi R, Matsumoto S, Isobe R, Miyamoto T (1995) Structure determination of the major component of the starfish ganglioside molecular species LG-2 by tandem mass spectrometry. Tetrahedron 51:8961–8968CrossRefGoogle Scholar
  12. 12.
    Inagaki M, Miyamoto T, Isobe R, Higuchi R (2005) Biologically active glycosides from asteroidea 43. Isolation and structure of a new neuritogenic-active ganglioside molecular species from the starfish Linckia laevigata. Chem Pharm Bull 53:1551–1554PubMedCrossRefGoogle Scholar
  13. 13.
    Higuchi R, Inukai K, Jhou JX, Honda M, Komori T, Tsuji S, Nagai Y (1993) Biologically active glycosides from asteroidea XXXI. Glycosphingolipids from the starfish Asterias amurensis versicolor Sladen 2. Structure and biological activity of ganglioside molecular species. Liebigs Ann Chem 1993:359–366Google Scholar
  14. 14.
    Smirnova GP, Chekareva NV, Kochetkov NK (1986) Gangliosides of the ophiuroid Ophiura sarsi. Bioorg Khim 12:507–513Google Scholar
  15. 15.
    Kisa F, Yamada K, Miyamoto T, Inagaki M, Higuchi R (2006) Constituents of holothuroidea 17. Isolation and structure of biologically active monosialo-gangliosides from the sea cucumber Cucumaria echinata. Chem Pharm Bull 54:982–987PubMedCrossRefGoogle Scholar
  16. 16.
    Yamada K, Harada Y, Nagaregawa Y, Miyamoto T, Isobe R, Higuchi R (1998) Constituents of holothuroidea 7. Isolation and structure of biologically active gangliosides from the sea cucumber Holothuria pervicax. Eur J Org Chem 1998:2519–2525Google Scholar
  17. 17.
    Yamada K, Harada Y, Miyamoto T, Isobe R, Higuchi R (2000) Constituents of holothuroidea 9. Isolation and structure of a new ganglioside molecular species from the sea cucumber Holothuria pervicax. Chem Pharm Bull 48:157–159PubMedGoogle Scholar
  18. 18.
    Miyamoto T, Yamamoto A, Wakabayashi M, Nagaregawa Y, Inagaki M, Higuchi R, Iha M, Teruya K (2000) Biologically active glycosides from asteroidea 40. Two new gangliosides, acanthagangliosides I and J from the starfish Acanthaster planci. Eur J Org Chem 2000:2295–2301Google Scholar
  19. 19.
    Yamada K, Matsubara R, Kaneko M, Miyamoto T, Higuchi R (2001) Constituents of holothuroidea 10. Isolation and structure of a biologically active ganglioside molecular species from the sea cucumber Holothuria leucospilota. Chem Pharm Bull 49:447–452PubMedCrossRefGoogle Scholar
  20. 20.
    Kaneko M, Kisa F, Yamada K, Miyamoto T, Higuchi R (2003) Structure of a new neuritogenic-active ganglioside from the sea cucumber Stichopus japonicus. Eur J Org Chem 2003:1004–1008Google Scholar
  21. 21.
    Arao K, Inagaki M, Higuchi R (2001) Constituents of crinoidea 2. Isolation and structure of the novel type gangliosides from the feather star Comanthus japonica. Chem Pharm Bull 49:695–698PubMedCrossRefGoogle Scholar
  22. 22.
    Arao K, Inagaki M, Miyamoto T, Higuchi R (2004) Constituents of crinoidea 3. Isolation and structure of a glycosyl inositolphosphoceramide-type ganglioside with neuritogenic activity from the feather star Comanthus japonica. Chem Pharm Bull 52:1140–1142PubMedCrossRefGoogle Scholar
  23. 23.
    Inagaki M, Shibai M, Isobe R, Higuchi R (2001) Constituents of ophiuroidea 1. Isolation and structure of three ganglioside molecular species from the brittle star Ophiocoma scolopendrina. Chem Pharm Bull 49:1521–1525PubMedCrossRefGoogle Scholar
  24. 24.
    Kaneko M, Yamada K, Miyamoto T, Inagaki M, Higuchi R (2007) Neuritogenic activity of gangliosides from echinoderms and their structure-activity relationship. Chem Pharm Bull 55:462–463PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer 2007

Authors and Affiliations

  • Ryuichi Higuchi
    • 1
  • Masanori Inagaki
    • 1
  • Koji Yamada
    • 1
  • Tomofumi Miyamoto
    • 1
  1. 1.Faculty of Pharmaceutical SciencesKyushu UniversityFukuokaJapan

Personalised recommendations