Journal of Natural Medicines

, Volume 61, Issue 1, pp 1–13

Physiological functions of solanaceous and tomato steroidal glycosides

  • Toshihiro Nohara
  • Tsuyoshi Ikeda
  • Yukio Fujiwara
  • Sayaka Matsushita
  • Eishin Noguchi
  • Hitoshi Yoshimitsu
  • Masateru Ono
Review

Abstract

Solanaceous plants are widely distributed. They are used as food and in folk medicine. Our studies focused on these plants, starting with Solanum lyratum and S. nigrum, which are used as anti-cancer and anti-herpes agents. Extensive investigations in 45 Solanum plant species revealed that a considerable amount of glycosides such as spirosolane, solanidane, spirostane and furostane is in these plants, and some of the isolated glycosides showed strong anti-proliferative activity against various cancer cell lines and anti-herpes activity. Furthermore, we have discovered a few new hypothetical biosynthetic routes in which the pathways for the biosynthesis of 16-acyl-pregnane and pregnane glycosides were the most interesting. The occurrence of these pregnane compounds indicates that they might be internally biosynthesized in the plant from furostanol glycosides by a reaction that is similar to Marker degradation. Furthermore, this may imply that the administration of steroidal glycosides may result in their metabolization into pregnane derivatives possessing various activities. In order to perform metabolic experiments using the steroidal glycosides, we recently isolated tomato glycosides from ripe tomato fruits for the first time. For this experiment, we examined the metabolites in urine obtained from persons that consumed tomatoes. We obtained androstane derivatives that were probably metabolized via pregnane derivatives from tomato glycoside. Hence, when a steroidal glycoside is administered, it may be metabolized into a type of steroidal hormone with various physiological activities.

Keywords

Steroidal glycoside Pregnane glycoside Tomato glycoside Lycopersicon esculentum Spirosolane-type Solanocapsine-type Saponin metabolism Seasonal variation Cytotoxicity Anti-herpes activity Anti-arteriosclerosis 

References

  1. 1.
    Marker RE, Tsukamoto T, Turner DL (1940) Sterols. C. Diosgenin. J Am Chem Sci 62:2525–2532CrossRefGoogle Scholar
  2. 2.
    Kupchan SM, Barboutis SJ, Knox JR, Cam CAL (1965) Beta-solamarine: tumor inhibitor isolated from Solanum dulcamara. Science 150:1827–1831PubMedCrossRefGoogle Scholar
  3. 3.
    Saijo R, Murakami K, Nohara T, Tomimatsu T, Sato A, Matsuoka K (1982) Studies on the constituents of Solanum plants. II. On the constituents of the immature berries of Solanum nigrum L. Yakugaku Zasshi 102:300–305PubMedGoogle Scholar
  4. 4.
    Murakami K, Ejima H, Takaishi Y, Takeda Y, Fujita T, Sato A, Nagayama Y, Nohara T (1985) Studies on the constituents of Solanum plants. V. The constituents of S. lyratum Thunb. II. Chem Pharm Bull 33:67–73Google Scholar
  5. 5.
    Nohara T (2004) Search for functions of natural oligoglycosides—Solanaceae and Leguminosae origin glycosides. Yakugaku Zasshi 124:183–205PubMedCrossRefGoogle Scholar
  6. 6.
    Zhu X, Tsumagari H, Honbu T, Ikeda T, Ono H, Nohara T (2001) Peculiar steroidal saponins with opened E-ring from Solanum genera plants. Tetrahedron Lett 42:8043–8046CrossRefGoogle Scholar
  7. 7.
    Tagawa C, Okawa M, Ikeda M, Yoshida T, Nohara T (2003) Homo-cholestane glycosides from Solanum aethiopicum. Tetrahedron Lett 44:4839–4841CrossRefGoogle Scholar
  8. 8.
    Ikeda T, Tsumagari H, Okawa M, Nohara T (2004) Pregnane- and furostane-type oligoglycosides from the seeds of Allium tuberosum. Chem Pharm Bull 52:142–145PubMedCrossRefGoogle Scholar
  9. 9.
    Nohara T, Yabuta H, Suenobu M, Hida R, Miyahara K, Kawasaki T (1973) Steroid glycosides in Paris polyphlla Sm. Chem Pharm Bull 21:1240–1247Google Scholar
  10. 10.
    Nakamura T, Komori C, Lee Y, Hashimoto F, Yahara S, Nohara T, Ejima A (1996) Cytotoxic activities of Solanum steroidal glycosides. Chem Pharm Bull 19:564–566Google Scholar
  11. 11.
    Ikeda T, Tsumagari H, Honbu T, Nohara T (2003) Cytotoxic activity of steroidal glycosides from Solanum plants. Biol Pharm Bull 26:1198–1201PubMedCrossRefGoogle Scholar
  12. 12.
    Ikeda T, Ando J, Miyazono A, Zhu X, Tsumagari H, Nohara T, Yokomizo K, Uyeda M (2000) Anti-herpes virus activiity of Solanum steroidal glycosides. Biol Pharm Bull 23:363–364PubMedGoogle Scholar
  13. 13.
    Dong M, Feng X, Wang B, Wu L, Ikejima T (2001) Two novel furostanol saponins from the rhizomes of Dioscorea panthaica Rain et Burkill and their cytotoxic activity. Tetrahedron Lett 57:501–506Google Scholar
  14. 14.
    Tran Q, Tezuka Y, Banskota AH, Tran QK, Saiki I, Kadota S (2001) New spirostanol steroids and steroidal saponins from roots and rhizomes of Dracaera angustifolia and their antiproliferactive activity. J Nat Prod 64:1127–1132PubMedCrossRefGoogle Scholar
  15. 15.
    Yin J, Kouda K, Tezuka Y, Tran QL, Miyahara T, Chen Y, Kadota S (2003) Steroidal glycosides from the rhizomes of Dioscorea spongiosa. J Nat Prod 66:646–650PubMedCrossRefGoogle Scholar
  16. 16.
    Liu H, Xiong Z, Li F, Qu G, Kobayashi H, Yao X (2003) Two new pregnane glycosides from Dioscorea futschauensis R. Kunth. Chem Pharm Bull 51:1089–1091PubMedCrossRefGoogle Scholar
  17. 17.
    Yokosuka A, Mimaki Y, Sashida Y (2002) Steroidal and pregnane glycosides from the rhizomes of Tacca chantrieri. J Nat Prod 65:1293–1298PubMedCrossRefGoogle Scholar
  18. 18.
    Mimaki Y, Watanabe K, Sakagami H, Sashida Y (2002) Steroidal glycosides from the leaves of Cestrum nocturnum. J Nat Prod 65:1863–1868PubMedCrossRefGoogle Scholar
  19. 19.
    Cham BE, Daunter B (1990) Topical treatment of pre-malignant and malignant skin cancers with curaderm. Drugs Today 26:55–58Google Scholar
  20. 20.
    Sato H, Sakamura S (1973) A bitter principle of tomato seeds. Agr Biol Chem 37:225–231Google Scholar
  21. 21.
    Yahara S, Uda N, Nohara T (1996) Lycoperosides AC, three stereo isomeric 23-acetoxyspirosolan-3β-ol β-lycotetraosides from Lycopersicon esculentum. Phytochemistry 42:169–172CrossRefGoogle Scholar
  22. 22.
    Nagaoka T, Yoshihara T, Sakamura S (1987) Lycopersiconolide, a steroidal lactone from tomato roots. Phytochemistry 26:2113–2114CrossRefGoogle Scholar
  23. 23.
    Yoshihara T, Nagaoka T, Sakamura S (1988) Lycopersiconol, a pregnane derivative from tomato stock roots. Phytochemistry 27:3982–3984CrossRefGoogle Scholar
  24. 24.
    Nagaoka T, Yosihihara T, Ohra J, Sakamura S (1993) Steroidal alkaloids from roots of tomato stook. Phytochemistry 34:1153–1157CrossRefGoogle Scholar
  25. 25.
    Fujiwara Y, Yahara S, Ikeda T, Ono M, Nohara T (2003) Cytotoxic major saponin from tomato fruits. Chem Pharm Bull 51:234–235PubMedCrossRefGoogle Scholar
  26. 26.
    Fujiwara Y, Takaki A, Uehara Y, Ikeda T, Okawa M, Yamauchi K, Ono M, Yoshimitsu H, Nohara T (2004) Tomato steroidal alkaloid glycosides, esculeosides A and B, from ripe fruits. Tetrahedron 60:4915–1820CrossRefGoogle Scholar
  27. 27.
    Hara S, Okabe H, Mihashi K (1987) Gas-liquid chromatographic separation of aldose enantiomers as trimethylsilyl ethers of methyl 2-(polyhydroxyalkyl) thiazolidine-4(R)-carboxylates. Chem Pharm Bull 35:501–507Google Scholar
  28. 28.
    Hirai Y, Konishi T, Sanada S, Ida Y, Shoji Y (1982) Studies on the constituents of Aspidistra elatior Blume I. On the steroids of underground part. Chem Phharm Bull 30:3176–3184Google Scholar
  29. 29.
    Schreiber K, Ripperger H (1962) Constitution and stereo-chemistry of solanocapsine. Liebig’s Ann 655:114–135CrossRefGoogle Scholar
  30. 30.
    Ito S, Takahama H, Kawaguchi T, Tanaka S, Iwaki M (2002) Post-transcriptional silencing of the tomatinase gene in Fusarium oxysporum f. sp lycopersici. J Phytopathol 150:474–480CrossRefGoogle Scholar
  31. 31.
    Yoshizaki M, Matsushita S, Fujiwara H, Ono M, Nohara T (2005) Tomato new sapogenols, isoesculeogenin A and esculeogenin B. Chem Pharm Bull 53:839–840PubMedCrossRefGoogle Scholar
  32. 32.
    Fujiwara Y, Yoshizaki M, Matsushita M, Yahara S, Yae E, Ikeda T, Ono M, Nohara T (2005) A new tomato pregnane glycoside from overripe fruits. Chem Pharm Bull 53:580–585CrossRefGoogle Scholar
  33. 33.
    Matsushita S, Yoshizaki M, Fujiwara Y, Ikeda T, Ono M, Okawara T, Nohara T (2005) Facile conversion of 23-hydroxyspirosolane into pregnane. Tetraheron Lett 46:3549–3551CrossRefGoogle Scholar
  34. 34.
    Blunt JW, Stothers JB (1977) 13C NMR spectra of steroids—a survey and commentary. Org Mag Res 9:439–464CrossRefGoogle Scholar
  35. 35.
    Eggert H, Djerassi C (1981) Carbon-13 nuclear magnetic resonance spectra of monounsaturated steroids evaluation of rules for predicting their chemical shifts. J Org Chem 46:5399–5401CrossRefGoogle Scholar
  36. 36.
    Yoshikawa M (2002) Constituent for preventing diabetes. Kagaku Seibutsu 40:172–178Google Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer-Verlag 2006

Authors and Affiliations

  • Toshihiro Nohara
    • 1
  • Tsuyoshi Ikeda
    • 1
  • Yukio Fujiwara
    • 1
  • Sayaka Matsushita
    • 1
  • Eishin Noguchi
    • 1
  • Hitoshi Yoshimitsu
    • 2
  • Masateru Ono
    • 3
  1. 1.Faculty of Medical and Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
  2. 2.Faculty of Pharmaceutical SciencesSojo UniversityKumamotoJapan
  3. 3.School of AgricultureKyushu Tokai UniversityKumamotoJapan

Personalised recommendations