Behavioral detection of malware: from a survey towards an established taxonomy
- 1.3k Downloads
- 76 Citations
Abstract
Behavioral detection differs from appearance detection in that it identifies the actions performed by the malware rather than syntactic markers. Identifying these malicious actions and interpreting their final purpose is a complex reasoning process. This paper draws up a survey of the different reasoning techniques deployed among the behavioral detectors. These detectors have been classified according to a new taxonomy introduced inside the paper. Strongly inspired from the domain of program testing, this taxonomy divides the behavioral detectors into two main families: simulation-based and formal detectors. Inside these families, ramifications are then derived according to the data collection mechanisms the data interpretation, the adopted model and its generation, and the decision support.
Keywords
Virtual Machine Model Check Intrusion Detection System Call Execution PathPreview
Unable to display preview. Download preview PDF.
References
- 1.Cohen, F.: Computer viruses. Ph.D. thesis, University of South California (1986)Google Scholar
- 2.Cohen F.B. (1987). Computer viruses: Theory and experiments. Comput. Secur. 6(1): 22–35 CrossRefGoogle Scholar
- 3.Debar H., Dacier M. and Wespi A. (1999). Towards a taxonomy of intrusion-detection systems. Comput. Netw. Spl Issue Comput. Netw. Secur. 31(9): 805–822 Google Scholar
- 4.Mé, L., Morin, B.: Intrusion detection and virology: an analysis of differences, similarities and complementariness. In: Bonfante, G., Marion, J.-Y. (eds.) J. Comput. Virol., vol. 3, no. 1, WTCV’06 Special Issue, pp. 39–49 (2007)Google Scholar
- 5.Anderson, J.: Computer security threat monitoring and surveillance. Tech. rep., James P. Anderson Company (1980)Google Scholar
- 6.Denning, D.: An intrusion–detection model. IEEE Trans. Softw. Eng., vol. SE-13 (1987)Google Scholar
- 7.Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusion using system calls: Alternative data models, In: Proceedings of IEEE Symposium on Security and Privacy, pp. 133–145 (1999)Google Scholar
- 8.Zanero, S.: Behavioral intrusion detection. In: Proceedings of the 19th International Symposium on Computer and Information Sciences (ISCIS), pp. 657–666 (2004)Google Scholar
- 9.Filiol, E.: Computer viruses: from theory to applications. Springer, Heidelberg, IRIS Collection (2005). ISBN:2-287-23939-1Google Scholar
- 10.Fortinet observatory. http://www.fortinet.com/FortiGuardCenter/
- 11.Malware outbreak trend report: Storm-worm, Commtouch Software Ltd (2007). http://www.commtouch.com/downloads/Storm-Worm_MOTR.pdf
- 12.Filiol, E.: Malware pattern scanning schemes secure against black-box analysis. In: Broucek, V., Turner, P. (eds.) J. Comput. Virol., vol. 2, no. 1, EICAR 2006 Special Issue, pp. 35–50 (2006)Google Scholar
- 13.Filiol, E. (2007). Techniques Virales Avancées. Springer, Heidelberg, IRIS Collection. ISBN:2-287-33887-8Google Scholar
- 14.Ször, P.: The Art of Computer Virus Research and Defense. Addison-Wesley, Reading (2005). ISBN:0-321-30454-3Google Scholar
- 15.Spinellis D. (2003). Reliable identification of boundedlength viruses is np-complete. IEEE Trans. Inf. Theory 49: 280–284 zbMATHCrossRefMathSciNetGoogle Scholar
- 16.Filiol, E.: Metamorphism, formal grammars and undecidable code mutation. In: Proceedings of the International Conference on Computational Intelligence (ICCI), Published in the Int. J. Comput. Sci., vol. 2, issue 1, pp. 70–75 (2007)Google Scholar
- 17.Christodorescu, M., Jha, S.: Testing malware detectors, In: Proceedings of the ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), pp. 34–44, ACM Press, New York (2004)Google Scholar
- 18.Josse, S.: How to assess the effectiveness of your anti-virus? In: Broucek, V. (ed.) J. Comput. Virol., vol. 2, no. 1, EICAR 2006 Special Issue, pp. 51–65 (2006)Google Scholar
- 19.Filiol, E., Jacob, G., Liard, M.L.: Evaluation methodology and theoretical model for antiviral behavioural detection strategies. In: Bonfante, G., Marion, J.-Y. (eds.) J. Comput. Virol., vol. 3, no. 1, WTCV’06 Special Issue, pp. 23–37 (2007)Google Scholar
- 20.Kruegel, C., Mutz, D., Valeur, F., Vigna, G.: On the detection of anomalous system call arguments. In: Proceedings of the European Symposium on Research in Computer Security, pp. 326–343 (2003)Google Scholar
- 21.Hoglund, G., Butler, J.: Rootkits, Subverting the Windows Kernel. Addison-Wesley Professional, Reading (2006). ISBN: 0-321-29431-9Google Scholar
- 22.Vivanco, A.D.: Comprehensive non-intrusive protection with data-restoration: A proactive approach against malicious mobile code. Master’s thesis, Florida Institute of Technology (2002)Google Scholar
- 23.Wagner, M.E.: Behavior oriented detection of malicious code at run-time. Master’s thesis, Florida Institute of Technology (2004)Google Scholar
- 24.Norman’s sandbox malware analyzer. Norman ASA. http://www.norman.com/microsites/malwareanalyzer/fr/
- 25.Cwsandbox. Sunbelt Software. http://www.cwsandbox.org
- 26.Bayer, U., Moser, A., Kruegel, C., Kirda, E.: Dynamic analysis of malicious code. In: Broucek, V., Turner, P., (eds.) J. Comput. Virol., vol. 2, no. 1, EICAR 2006 Special Issue, pp. 67–77 (2006)Google Scholar
- 27.Rutkowska, J.: Red pill... or how to detect vmm using (almost) one cpu instruction (2005). http://invisiblethings.org/papers/redpill.html
- 28.Ferrie, P.: Attacks on virtual machine emulators. In: Proceedings of the AVAR Conference (2006)Google Scholar
- 29.Debbabi, M.: Dynamic monitoring of malicious activity in software systems. In: Proceedings of the Symposium on Requirements Engineering for Information Security (SREIS) (2001)Google Scholar
- 30.Nachenberg, C.: Behavior blocking: The next step in anti-virus protection, SecurityFocus, 2002. http://www.securityfocus.com/infocus/1557
- 31.Schmall, M.: Classification and identification of malicious code based on heuristic techniques utilizing meta-languages. Ph.D. thesis, University of Hamburg (2002)Google Scholar
- 32.Schmall, M.: Heuristic techniques in av solutions: An overview, SecurityFocus (2002). http://www.securityfocus.com/infocus/1542
- 33.Veldman, F.: Heuristic anti-virus technology. In: Proceedings of the International Virus Protection and Information Security Council (1994)Google Scholar
- 34.Zwienenberg, R.: Heuristics scanners: Artificial intelligence? In: Proceedings of the Virus Bulletin Conference, pp. 203–210 (1994)Google Scholar
- 35.Understanding heuristics: Symantec bloodhound technology. Tech. rep., Symantec White Paper Series, vol. XXXIV (1997)Google Scholar
- 36.Glover, F.W., Kochenberger, G.A.: Handbook of Metaheuristics. Springer, Heidelberg (2003). ISBN:1-402-07263-5Google Scholar
- 37.Charlier, B.L., Mounji, A., Swimmer, M.: Dynamic detection and classification of computer viruses using general behaviour patterns. In: Proceedings of the Virus Bulletin Conference (1995)Google Scholar
- 38.Sekar, R., Bendre, M., Bollineni, P., Dhurjati, D.: A fast automaton-based approach for detecting anomalous program behaviors. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 144–155 (2001)Google Scholar
- 39.Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages and Computation, 2nd edn. Addison Wesley, Reading (1995). ISBN:0-201-44124-1Google Scholar
- 40.Mazeroff, G., Cerqueira, V.D., Gregor, J., Thomason, M.G.: Probabilistic trees and automata for application behavior modeling. In: Proceedings of the 43rd ACM Southeast Conference (2003)Google Scholar
- 41.Kaspersky, K.: Hacker Disassembling Uncovered, 2nd edn. A-LIST, LLC (2007). ISBN:1-931-76964-8Google Scholar
- 42.Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations. Tech. rep., Technical Report 148, Department of Computer Science, University of Auckland (1997)Google Scholar
- 43.Kruegel, C., Robertson, W., Valeur, F., Vigna, G.: Static disassembly of obfuscated binaries. In: SSYM’04: Proceedings of the 13th conference on USENIX Security Symposium, pp. 18–18 (2004)Google Scholar
- 44.Josse S. (2007). Secure and advanced unpacking using computer emulation, extended version from the avar conference. J. Comput. Virol. 3(3): 221–236 CrossRefGoogle Scholar
- 45.Preda, M.D., Christodorescu, M., Jha, S., Debray, S.: A semantic-based approach to malware detection. In: Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL) (2007)Google Scholar
- 46.Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantic-aware malware detection. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 32–46 (2005)Google Scholar
- 47.Bruschi, D., Martignoni, L., Monga, M.: Detecting self-mutating malware using control-flow graph matching. In: Proceedings of the Conference on the Detection of Intrusions and Malwares and Vulnerability Assessment (DIMVA), pp. 129–143 (2006)Google Scholar
- 48.Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm detection using structural information of executables. In: International Symposium on Recent Advances in Intrusion Detection (RAID) (2005)Google Scholar
- 49.Periot, F.: Defeating polymorphism through code optimization. In: Proceedings of the Virus Bulletin Conference, pp. 142–159 (2003)Google Scholar
- 50.Bruschi, D., Martignoni, L., Monga, M.: Using code normalization for fighting self-mutating malware. In: Proceedings of the International Symposium on Secure Software Engineering, pp. 37–44, IEEE CS Press (2006)Google Scholar
- 51.Webster, M.: Algebraic specification of computer viruses and their environments. In: Selected Papers from the First Conference on Algebra and Coalgebra in Computer Science Young Researchers Workshop (CALCO-jnr 2005), University of Wales Swansea Computer Science Report Series (CSR 18-2005), pp. 99–113 (2005)Google Scholar
- 52.Webster M. and Malcolm G. (2006). Detection of metamorphic computer viruses using algebraic specification. J. Comput. Virol. 2(3): 149–161 CrossRefGoogle Scholar
- 53.Bergeron, J., Debbabi, M., Desharnais, J., Erhioui, M.M., Lavoie, Y., Tawbi, N.: Static detection of malicious code in executable programs. In: Proceedings of the Symposium on Requirements Engineering for Information Security (SREIS) (2001)Google Scholar
- 54.Singh, P., Lakhotia, A.: Static verification of worm and virus behavior in binary executables using model checking. In: Proceedings of the IEEE Information Assurance Workshop, pp. 298–300 (2003)Google Scholar
- 55.Clark, E., Grumberg, O., Long, D.: Model Checking. MIT Press, Cambridge (1999). ISBN:0-262-03270-8Google Scholar
- 56.Schnoebelen P. (2003). The complexity of temporal logic model checking. Adv. Modal Logic 4: 393–436 MathSciNetGoogle Scholar
- 57.Kinder J., Katzenbeisser S., Schallhart C. and Veith H. (2005). Detecting malicious code by model checking. Lect. Notes Computer Sci. 3548: 174–187 CrossRefGoogle Scholar
- 58.Perdisci, R., Dagon, D., Fogla, P.W.L., Sharif, M.: Misleading worm signature generators using deliberate noise injection. In: Proceedings of IEEE Symposium on Security and Privacy (2006)Google Scholar
- 59.Lee, W., Stolfo, S., Chan, P.: Learning patterns from unix process execution traces for intrusion detection. In: Proceedings of the AAAI97 Workshop on AI Approaches to Fraud Detection and Risk Management, pp. 50–56. Addison Wesley, Reading (1997)Google Scholar
- 60.Schultz, M.G., Eskin, E., Zadok, E.: Data mining methods for detection of new malicious executables. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 38–49 (2001)Google Scholar
- 61.Wang, J.-H., Deng, P.S., Fan, Y.-S., Jaw, L.-J., Liu, Y.-C.: Virus detection using data mining techniques. In: Proceedings of IEEE on Security Technology, pp. 71–76 (2003)Google Scholar
- 62.Kolter, J., Maloof, M.: Learning to detect malicious executables in the wild. In: Proceedings of the 2004 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 470–478. ACM Press, New York (2004)Google Scholar
- 63.Lee, T., Mody, J.: Behavioral classification. In: Proceedings of EICAR (2006)Google Scholar
- 64.Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.: Behavior-based spyware detection. In: Proceedings of the 15th USENIX Security Symposium (2006)Google Scholar
- 65.Frost&Sullivan, Protection en temps réel contre toutes les menaces, Tech. Rep., White Paper EsetGoogle Scholar
- 66.Avg anti-virus. Grisoft. http://www.grisoft.com/doc/39/lng/fr/tpl/tpl01
- 67.
- 68.Bitdefender antivirus technology, Tech. Rep., BitDefender White PaperGoogle Scholar
- 69.Host and network intrusion prevention, competitors or partners? Tech. rep., Mc Affee White Paper (2004)Google Scholar
- 70.Safe′n′sec antivirus. Safen Soft. http://www.safensoft.com/technology/
- 71.Truprevent. Panda Software. http://www.pandasoftware.com/products/truprevent_tec.htm?sitepanda=particulares
- 72.Virus keeper. AxBa. http://www.viruskeeper.com/fr/faq.htm