Computer-supported argumentation: A review of the state of the art

  • Oliver Scheuer
  • Frank Loll
  • Niels Pinkwart
  • Bruce M. McLaren
Article

Abstract

Argumentation is an important skill to learn. It is valuable not only in many professional contexts, such as the law, science, politics, and business, but also in everyday life. However, not many people are good arguers. In response to this, researchers and practitioners over the past 15–20 years have developed software tools both to support and teach argumentation. Some of these tools are used in individual fashion, to present students with the “rules” of argumentation in a particular domain and give them an opportunity to practice, while other tools are used in collaborative fashion, to facilitate communication and argumentation between multiple, and perhaps distant, participants. In this paper, we review the extensive literature on argumentation systems, both individual and collaborative, and both supportive and educational, with an eye toward particular aspects of the past work. More specifically, we review the types of argument representations that have been used, the various types of interaction design and ontologies that have been employed, and the system architecture issues that have been addressed. In addition, we discuss intelligent and automated features that have been imbued in past systems, such as automatically analyzing the quality of arguments and providing intelligent feedback to support and/or tutor argumentation. We also discuss a variety of empirical studies that have been done with argumentation systems, including, among other aspects, studies that have evaluated the effect of argument diagrams (e.g., textual versus graphical), different representations, and adaptive feedback on learning argumentation. Finally, we conclude by summarizing the “lessons learned” from this large and impressive body of work, particularly focusing on lessons for the CSCL research community and its ongoing efforts to develop computer-mediated collaborative argumentation systems.

Keywords

Collaborative argumentation Argumentation systems Argument visualization Analysis and feedback Empirical studies of argumentation systems 

References

  1. Ainsworth, S. E. (1999). Designing effective multi-representational learning environments, Technical Report number 58. ESRC centre for research in development, instruction and training, University of Nottingham, UK.Google Scholar
  2. Aleven, V., & Ashley, K. D. (1997). Teaching case-based argumentation through a model and examples: Empirical evaluation of an intelligent learning environment. In B. du Boulay & R. Mizoguchi (Eds.), Proceedings of the 8th International Conference on Artificial Intelligence in Education (AI-ED 1997) (pp. 87–94). Amsterdam: IOS.Google Scholar
  3. Allwood, J. (2002). Bodily communication dimensions of expression and content. In B. Granström, D. House, & I. Karlsson (Eds.), Multimodality in language and speech systems (pp. 7–26). Dordrecht: Kluwer Academic.Google Scholar
  4. Andriessen, J. (2006). Arguing to learn. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 443–460). New York: Cambridge University Press.Google Scholar
  5. Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. Addison Wesley.Google Scholar
  6. Baghaei, N., Mitrovic, A., & Irwin, W. (2007). Supporting collaborative learning and problem-solving in a constraint-based CSCL environment for UML class diagrams. International Journal of Computer-Supported Collaborative Learning (ijCSCL), 2(2–3), 159–190.Google Scholar
  7. Baker, M. J. (2003). Computer-mediated argumentative interactions for the co-elaboration of scientific notions. In J. Andriessen, M. J. Baker, & D. D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 47–78). Dordrecht: Kluwer Academic.Google Scholar
  8. Belgiorno, F., De Chiara, R., Manno, I., Overdijk, M., Scarano, V., & van Diggelen, W. (2008). Face to face cooperation with CoFFEE. In P. Dillenbourg & M. Specht (Eds.), Proceedings of the 3rd European Conference on Technology Enhanced Learning (EC-TEL 2008) (pp. 49–57). Berlin: Springer.Google Scholar
  9. Bell, P. (1997). Using argument representations to make thinking visible for individuals and groups. In R. Hall, N. Miyake, & N. Enyedy (Eds.), Proceedings of the 2nd International Conference on Computer Support for Collaborative Learning (CSCL 1997) (pp. 10–19). Toronto: University of Toronto Press.Google Scholar
  10. Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: Designing for learning from the web with KIE. International Journal of Science Education, 22, 797–817.Google Scholar
  11. Bex, F., Prakken, H., Reed, C., & Walton, D. (2003). Towards a formal account of reasoning about evidence: Argumentation schemes and generalizations. Artificial Intelligence and Law, 11(2–3), 125–165.Google Scholar
  12. Bex, F., van den Braak, S., Oostendorp, H., Prakken, H., Verheij, B., & Vreeswijk, G. A. W. (2007). Sense-making software for crime investigation: How to combine stories and arguments? Law, Probability and Risk, 6(1–4), 145–168.Google Scholar
  13. Bouyias, Y. N., Demetriadis, S. N., & Tsoukalas, I. A. (2008). iArgue: A web-based argumentation system supporting collaboration scripts with adaptable fading. In Proceedings of the 8th International Conference on Advanced Learning Technologies (ICALT 2008) (pp. 477–479). IEEE Computer Society Press.Google Scholar
  14. Bransford, J. D., Brown, A. L., & Cocking, R. R. (1999). How people learn: Brain, mind, experience, and school. Washington: National Academy Press.Google Scholar
  15. Buckingham Shum, S. J., MacLean, A., Bellotti, V. M. E., & Hammond, N. V. (1997). Graphical argumentation and design cognition. Human-Computer Interaction, 12(3), 267–300.Google Scholar
  16. Buckingham Shum, S. J., Uren, V., Li, G., Domingue, J., Motta, E., & Mancini, C. (2002). Designing representational coherence into an infrastructure for collective sense-making. Invited discussion paper presented at the 2nd International Workshop on Infrastructures for Distributed Collective Practices.Google Scholar
  17. Buckingham Shum, S. J., Selvin, A. M., Sierhuis, M., Conklin, J., Haley, C. B., & Nuseibeh, B. (2006). Hypermedia support for argumentation-based rationale: 15 years on from gIBIS and QOC. In A. H. Dutoit, R. McCall, I. Mistrik, & B. Paech (Eds.), Rationale management in software engineering (pp. 111–132). Berlin: Springer.Google Scholar
  18. Bull, S., Brna, P., & Pain, H. (1995). Extending the scope of the student model. User Modeling and User-Adapted Interaction, 5(1), 45–65.Google Scholar
  19. Carr, C. S. (2003). Using computer supported argument visualization to teach legal argumentation. In P. A. Kirschner, S. J. Buckingham Shum, & C. S. Carr (Eds.), Visualizing argumentation: Software tools for collaborative and educational sense-making (pp. 75–96). London: Springer.Google Scholar
  20. Chesñevar, C., Maguitman, A., & Loui, R. (2000). Logical models of argument. ACM Computing Surveys, 32(4), 337–383.Google Scholar
  21. Chesñevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., et al. (2007). Towards an argument interchange format. The Knowledge Engineering Review, 21(4), 293–316.Google Scholar
  22. Cho, K., & Schunn, C. D. (2007). Scaffolded writing and rewriting in the discipline: A web-based reciprocal peer review system. Computers & Education, 48(3), 409–426.Google Scholar
  23. Conklin, J., & Begeman, M. L. (1988). gIBIS: A hypertext tool for exploratory policy discussion. Proceedings of the ACM Conference on Computer-supported Cooperative Work (CSCW ‘88) (pp. 140–152). New York: ACM.Google Scholar
  24. Corbel, A., Girardot, J. J., & Jaillon, P. (2002). DREW: A dialogical reasoning web tool. In A. Méndez-Vilas & J. A. Mesa González (Eds.), Information Society and Education: Monitoring a Revolution, Proceedings of International Conference on Information and Communication Technologies in Education (ICTE 2002) (pp. 516–521).Google Scholar
  25. de Groot, R., Drachman, R., Hever, R., Schwarz, B., Hoppe, U., Harrer, A., et al. (2007). Computer supported moderation of e-discussions: The ARGUNAUT approach. In C. Chinn, G. Erkens & S. Puntambekar (Eds.), Mice, minds, and society—The computer supported collaborative learning (CSCL) Conference 2007, (pp. 165–167). International Society of the Learning Sciences.Google Scholar
  26. Devedzic, V., & Harrer, A. (2005). Software patterns in ITS architectures. International Journal of Artificial Intelligence in Education, 15(2), 63–94.Google Scholar
  27. de Vries, E., Lund, K., & Baker, M. (2002). Computer-mediated epistemic dialogue: Explanation and argumentation as vehicles for understanding scientific notions. The Journal of the Learning Sciences, 11(1), 63–103.Google Scholar
  28. Dillenbourg, P. (2002). Over-scripting CSCL. In P. A. Kirschner (Ed.), Three worlds of CSCL: Can we support CSCL (pp. 61–91). Heerlen: Open University of the Netherlands.Google Scholar
  29. Dillenbourg, P., & Hong, F. (2008). The mechanics of CSCL macro scripts. International Journal of Computer Supported Collaborative Learning (ijCSCL), 3(1), 5–23.Google Scholar
  30. Dillenbourg, P., Baker, M., Blaye, A., & O’Malley, C. (1996). The evolution of research on collaborative learning. In E. Spada & P. Reiman (Eds.), Learning in humans and machine: Towards an interdisciplinary learning science (pp. 189–211). Oxford: Elsevier.Google Scholar
  31. Doise, W., & Mugny, W. (1984). The social development of the intellect. Oxford: Pergamon.Google Scholar
  32. Easterday, M. W., Aleven, V., & Scheines, R. (2007). ‘Tis better to construct or to receive? Effect of diagrams on analysis of social policy. In R. Luckin, K. R. Koedinger, & J. Greer (Eds.), Proceedings of the 13th International Conference on Artificial Intelligence in Education (AI-ED 2007) (pp. 93–100). Amsterdam: IOS.Google Scholar
  33. Feng, D., Kim, J., Shaw, E., & Hovy, E. (2006). Towards modeling threaded discussions through ontology-based analysis. In Proceedings of 21st National Conference on Artificial Intelligence (AAAI 2006) (pp. 1289–1294).Google Scholar
  34. Gamma, E., Helm, R., Johnson, R. E., & Vlissides, J. (1995). Design patterns. Elements of reusable object-oriented software. Amsterdam: Addison-Wesley Longman.Google Scholar
  35. Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61–70.Google Scholar
  36. Goodman, B. A., Linton, F. N., Gaimari, R. D., Hitzeman, J. M., Ross, H. J., & Zarrella, G. (2005). Using dialogue features to predict trouble during collaborative learning. User Modeling and User-Adapted Interaction, 16(1–2), 85–134.Google Scholar
  37. Gordon, T. F., & Karacapilidis, N. (1997). The Zeno argumentation framework. In Proceedings of the 6th International Conference on AI and Law (ICAIL 1997) (pp. 10–18), New York: ACM.Google Scholar
  38. Gordon, T. F., Prakken, H., & Walton, D. (2007). The Carneades model of argument and burden of proof. Artificial Intelligence, 171(10–15), 875–896.Google Scholar
  39. Gruber, T. R. (1993). A translation approach to portable ontology specification. Knowledge Acquisition, 5(2), 199–220.Google Scholar
  40. Hair, D. C. (1991). Legalese: A legal argumentation tool. SIGCHI Bulletin, 23(1), 71–74.Google Scholar
  41. Harrer, A., & Devedzic, V. (2002). Design and analysis patterns in its architectures. In Proceedings of the International Conference on Computers in Education (ICCE’02) (pp. 523–527). Washington: IEEE Computer Society Press.Google Scholar
  42. Herman, I., & Marshall, M. S. (2000). GraphXMLan xml based graph interchange format. Available online: http://www.cwi.nl/ftp/CWIreports/INS/INS-R0009.pdf, last visited: 2009-10-29.
  43. Hoppe, H. U., Giemza, A., Wichmann, A., Krauß, M., Baurens, B., Rigolleau, B., et al. (2008). Combined deliverable D3.2bmoderator’s interface and D4.2bThe off-line tracer. Part A (documentation). Argunaut project deliverable. Available online: http://www.argunaut.org/argunaut-d3-2b-d4-2b-PartA.pdf, last visited: 2009-10-29.
  44. Israel, J., & Aiken, R. (2007). Supporting collaborative learning with an intelligent web-based system. International Journal of Artificial Intelligence in Education, 17, 3–40.Google Scholar
  45. Jeong, A. C. (2003). The sequential analysis of group interaction and critical thinking in online threaded discussions. The American Journal of Distance Education, 17(1), 25–43.Google Scholar
  46. Karacapilidis, N., & Papadias, D. (2001). Computer supported argumentation and collaborative decision making: The Hermes system. Information Systems, 26(4), 259–277.Google Scholar
  47. Karacapilidis, N., Tzagarakis, M., Karousos, N., Gkotsis, G., Kallistros, V., Christodoulou, S., et al. (2009). Tackling cognitively-complex collaboration with CoPe_it! International Journal of Web-Based Learning and Teaching Technologies, 4(3), 22–38.Google Scholar
  48. Keefer, M. W., Zeitz, C. M., & Resnick, L. B. (2000). Judging the quality of peer-led student dialogues. Cognition and Instruction, 18(1), 53–81.Google Scholar
  49. Kim, J., Shaw, E., Ravi, S., Tavano, E., Arromratana, A., & Sarda, P. (2008). Scaffolding on-line discussions with past discussions: An analysis and pilot study of pedabot. In B. P. Woolf, E. Aimeur, R. Nkambou, & S. Lajoie (Eds.), Proceedings of the 9th International Conference on Intelligent Tutoring Systems Conference (ITS-08) (pp. 343–352). Berlin: Springer.Google Scholar
  50. Klein, M., & Iandoli, L. (2008). Supporting collaborative deliberation using a large-scale argumentation system: The MIT collaboratorium, MIT Sloan Research Paper No. 4691-08. Available online: http://ssrn.com/abstract=1099082, last visited: 2009-11-26.
  51. Koschmann, T. (2003). CSCL, argumentation, and Deweyian inquiry: Argumentation is learning. In J. Andriessen, M. J. Baker, & D. D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 261–269). Dordrecht: Kluwer Academic.Google Scholar
  52. Kuhn, D. (1991). The skills of argument. Cambridge: Cambridge University Press.Google Scholar
  53. Kumar, R., Rosé, C. P., Wang, Y.-C., Joshi, M., & Robinson, A. (2007). Tutorial dialogue as adaptive collaborative learning support. In R. Luckin, K. R. Koedinger, & J. Greer (Eds.), Proceedings of the 13th International Conference on Artificial Intelligence in Education (AI-ED 2007) (pp. 383–390). Amsterdam: IOS.Google Scholar
  54. Kunz, W., & Rittel, H. (1970). Issues as elements of information systems. Working paper #131. Institut für Grundlagen der Planung I.A. University of Stuttgart, Germany. Available online: http://www.cc.gatech.edu/∼ellendo/rittel/rittel-issues.pdf, last visited: 2009-10-29.
  55. Leitão, S. (2000). The potential of argument in knowledge building. Human Development, 43(6), 332–360.Google Scholar
  56. Linn, M. C., Bell, P., & Hsi, S. (1998). Using the Internet to enhance student understanding of science: The knowledge integration environment. Interactive Learning Environments, 6(1–2), 4–38.Google Scholar
  57. Linn, M. C., Clark, D., & Slotta, J. D. (2003). Wise design for knowledge integration. Science Education, 87(4), 517–538.Google Scholar
  58. Loll, F., & Pinkwart, N. (2009). Using collaborative filtering algorithms as eLearning tools. In R. H. Sprague (Ed.), Proceedings of the 42nd Hawaii International Conference on System Sciences (HICSS 2009). IEEE Computer Society Press.Google Scholar
  59. Loll, F., Pinkwart, N., Scheuer, O., & McLaren, B. M. (2009). Towards a flexible intelligent tutoring system for argumentation. In I. Adeo, N. Chen, Kinshuk, D. Sampson, & L. Zaitseva (Eds.), Proceedings of the 9th IEEE International Conference on Advanced Learning Technologies (pp. 647–648). Los Alamitos: IEEE Computer Society.Google Scholar
  60. Loui, R. P., Norman, J., Altepeter, J., Pinkard, D., Linsday, J., & Foltz, M. (1997). Progress on room 5: A testbed for public interactive semi-formal legal argumentation. In Proceedings of the 6th International Conference on Artificial Intelligence and Law (ICAIL 1997) (pp. 207–214). ACM.Google Scholar
  61. Lowrance, J. D. (2007). Graphical manipulation of evidence in structured arguments. Law, Probability & Risk, 6(1–4), 225–240.Google Scholar
  62. Lowrance, J., Harrison, I., Rodriguez, A., Yeh, E., Boyce, T., Murdock, J., et al. (2008). Template-based structured argumentation. In A. Okada, S. Buckingham Shum, & T. Sherborne (Eds.), Knowledge cartography: Software tools and mapping techniques (pp. 307–333). London: Springer.Google Scholar
  63. Lund, K. (2007a). The importance of gaze and gesture in interactive multimodal explanation. Language Resources and Evaluation, 41(3–4), 289–303.Google Scholar
  64. Lund, K., Molinari, G., Séjorné, A., & Baker, M. (2007). How do argumentation diagrams compare when student pairs use them as a means for debate or as a tool for representing debate? International Journal of Computer-Supported Collaborative Learning (ijCSCL), 2(2–3), 273–295.Google Scholar
  65. Lynch, C., Ashley, K., Aleven, V., & Pinkwart, N. (2006). Defining ill-defined domains; a literature survey. In V. Aleven, K. Ashley, C. Lynch, & N. Pinkwart (Eds.), Proceedings of the Workshop on Intelligent Tutoring Systems for Ill-Defined Domains at the 8th International Conference on Intelligent Tutoring Systems (ITS 2008) (pp. 1–10). Jhongli: National Central University.Google Scholar
  66. Malone, T. W., & Klein, M. (2007). Harnessing collective intelligence to address global climate change. Innovations, 2(3), 15–26.Google Scholar
  67. Marshall, C. C., Halasz, F. G., Rogers, R. A., & Janssen, W. C. (1991). Aquanet: A hypertext tool to hold your knowledge in place. In Proceedings of the 3rd annual ACM conference on Hypertext (HYPERTEXT ‘91) (pp. 261–275). New York: ACM.Google Scholar
  68. McAlister, S., Ravenscroft, A., & Scanlon, E. (2004). Combining interaction and context design to support collaborative argumentation using a tool for synchronous CMC. Journal of Computer Assisted Learning: Special Issue: Developing Dialogue for Learning, 20(3), 194–204.Google Scholar
  69. McLaren, B. M., Scheuer, O., & Mikšátko, J. (in press). Supporting collaborative learning and e-discussions using artificial intelligence techniques. International Journal of Artificial Intelligence in Education.Google Scholar
  70. McManus, M., & Aiken, R. (1995). Monitoring computer-based problem solving. Journal of Artificial Intelligence in Education, 6(4), 307–336.Google Scholar
  71. Muller Mirza, N., & Perret-Clermont, A.-N. (2009). Argumentation and education: Theoretical foundations and practices (1st ed.). Berlin: Springer.Google Scholar
  72. Muller Mirza, N., Tartas, V., Perret-Clermont, A.-N., & de Pietro, J.-F. (2007). Using graphical tools in a phased activity for enhancing dialogical skills: An example with digalo. International Journal of Computer-Supported Collaborative Learning (ijCSCL), 2(2–3), 247–272.Google Scholar
  73. Munneke, L., van Amelsvoort, M., & Andriessen, J. (2003). The role of diagrams in collaborative argumentation-based learning. International Journal of Educational Research, 39(1–2), 113–131.Google Scholar
  74. Murray, T., Woolf, B., & Marshall, D. (2004). Lessons learned from authoring for inquiry learning: A tale of authoring tool evolution. In J. C. Lester, R. M. Vicari, & F. Paraguaçu (Eds.), Proceedings of the 7th International Conference on Intelligent Tutoring Systems (ITS 2004) (pp. 197–206). Berlin: Springer.Google Scholar
  75. Nussbaum, E. M., Winsor, D. L., Aqui, Y. M., & Poliquin, A. M. (2007). Putting the pieces together: Online argumentation vee diagrams enhance thinking during discussions. International Journal on Computer-Supported Collaborative Learning (ijCSCL), 2(4), 479–500.Google Scholar
  76. Okada, A., & Buckingham Shum, S. (2008). Evidence-based dialogue maps as a research tool to investigate the quality of school pupils’ scientific argumentation. International Journal of Research & Method in Education, 31(3), 291–315.Google Scholar
  77. Pinkwart, N., Aleven, V., Ashley, K., & Lynch, C. (2006a). Toward legal argument instruction with graph grammars and collaborative filtering techniques. In M. Ikeda, K. Ashley, & T. W. Chan (Eds.), Proceedings of the 8th International Conference on Intelligent Tutoring Systems (ITS 2006) (pp. 227–236). Berlin: Springer.Google Scholar
  78. Pinkwart, N., Aleven, V., Ashley, K., & Lynch, C. (2006b). Schwachstellenermittlung und Rückmeldungsprinzipen in einem intelligenten Tutorensystem für juristische Argumentation. In M. Mühlhäuser, G. Rößling & R. Steinmetz (Eds.), GI lecture notes in informaticsTagungsband der 4. e-Learning Fachtagung Informatik.Google Scholar
  79. Pinkwart, N., Aleven, V., Ashley, K., & Lynch, C. (2007). Evaluating legal argument instruction with graphical representations using largo. In R. Luckin, K. R. Koedinger, & J. Greer (Eds.), Proceedings of the 13th International Conference on Artificial Intelligence in Education (AI-ED 2007) (pp. 101–108). Amsterdam: IOS.Google Scholar
  80. Pinkwart, N., Ashley, K., Lynch, C., & Aleven, V. (2008a). Graph grammars: An ITS technology for diagram representations. In D. Wilson & H. C. Lane (Eds.), Proceedings of 21st International FLAIRS Conference (FLAIRS-21) (pp. 433–438). Coconut Grove: AAAI.Google Scholar
  81. Pinkwart, N., Lynch, C., Ashley, K., & Aleven, V. (2008b). Re-evaluating Largo in the classroom: Are diagrams better than text for teaching argumentation skills? In B. P. Woolf, E. Aimeur, R. Nkambou, & S. Lajoie (Eds.), Proceedings of the 9th International Conference on Intelligent Tutoring Systems (ITS 2008) (pp. 90–100). Berlin: Springer.Google Scholar
  82. Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286.Google Scholar
  83. Ranney, M., & Schank, P. (1998). Toward an integration of the social and the scientific: Observing, modeling, and promoting the explanatory coherence of reasoning. In S. Read & L. Miller (Eds.), Connectionist models of social reasoning and social behavior (pp. 245–274). Mahwah: Erlbaum.Google Scholar
  84. Ravenscroft, A., Sagar, M., Baur, E., & Oriogun, P. (2008). Ambient pedagogies, meaningful learning and social software. In S. Hatzipanagos & S. Warburton (Eds.), Social software & developing community ontologies (pp. 432–450). Hershey: IGI Global.Google Scholar
  85. Ravi, S., & Kim, J. (2007). Profiling student interactions in threaded discussions with speech act classifiers. In R. Luckin, K. R. Koedinger, & J. Greer (Eds.), Proceedings of the 13th International Conference on Artificial Intelligence in Education (AI-ED 2007) (pp. 357–364). Amsterdam: IOS.Google Scholar
  86. Reed, C., & Rowe, G. (2004). Araucaria: Software for argument analysis, diagramming and representation. International Journal of AI Tools, 14(3–4), 961–980.Google Scholar
  87. Reitman, W. R. (1964). Heuristic decision procedures open constraints and the structure of ill-defined problems. In M. W. Shelly & G. L. Bryan (Eds.), Human judgment and optimality (pp. 282–315). New York: Wiley.Google Scholar
  88. Rittel, H. W. T., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4, 155–169.Google Scholar
  89. Robertson, J., Good, J., & Pain, H. (1998). BetterBlether: The design and evaluation of a discussion tool for education. International Journal of Artificial Intelligence in Education, 9, 219–236.Google Scholar
  90. Rolf, B., & Magnusson, C. (2002). Developing the art of argumentation. A software approach. In Proceedings of the 5th International Conference on Argumentation. International Society for the Study of Argumentation (ISSA-2002) (pp. 919–926).Google Scholar
  91. Roschelle, J. (1992). Learning by collaborating: Convergent conceptual change. Journal of the Learning Sciences, 2(3), 235–276.Google Scholar
  92. Rosé, C., Wang, Y.-C., Cui, Y., Arguello, J., Stegmann, K., Weinberger, A., et al. (2008). Analyzing collaborative learning processes automatically: Exploiting the advances of computational linguistics in computer-supported collaborative learning. International Journal of Computer-Supported Collaborative Learning (ijCSCL), 3(3), 237–271.Google Scholar
  93. Roth, W.-M. (2000). From gesture to scientific language. Journal of Pragmatics, 32(11), 1683–1714.Google Scholar
  94. Rummel, N., & Spada, H. (2005). Learning to collaborate: An instructional approach to promoting collaborative problem-solving in computer-mediated settings. Journal of the Learning Sciences, 14(2), 201–241.Google Scholar
  95. Schank, P. (1995). Computational tools for modeling and aiding reasoning: Assessing and applying the theory of explanatory coherence. Doctoral dissertation. University of California, Berkeley. (University Microfilms No. 9621352).Google Scholar
  96. Schellens, T., van Keer, H., de Wever, B., & Valcke, M. (2007). Scripting by assigning roles: Does it improve knowledge construction in asynchronous discussion groups? International Journal of Computer Supported Collaborative Learning (ijCSCL), 2(2–3), 225–246.Google Scholar
  97. Schneider, D. C., Voigt, C., & Betz, G. (2007). ArguNet—a software tool for collaborative argumentation analysis and research. Paper presented at the 7th Workshop on Computational Models of Natural Argument (CMNA VII).Google Scholar
  98. Schwarz, B. B., & Glassner, A. (2003). The blind and the paralytic: Fostering argumentation in social and scientific issues. In J. Andriessen, M. J. Baker, & D. D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 227–260). Dordrecht: Kluwer Academic.Google Scholar
  99. Schwarz, B. B., & Glassner, A. (2007). The role of floor control and of ontology in argumentative activities with discussion-based tools. International Journal of Computer-Supported Collaborative Learning (ijCSCL), 2(4), 449–478.Google Scholar
  100. Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34(1), 1–47.Google Scholar
  101. Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research, 78(1), 153–189.Google Scholar
  102. Soller, A. (2001). Supporting social interaction in an intelligent collaborative learning system. International Journal of Artificial Intelligence in Education, 12, 40–62.Google Scholar
  103. Soller, A. (2004). Computational modeling and analysis of knowledge sharing in collaborative distance learning. User Modeling and User-Adapted Interaction, 14(4), 351–381.Google Scholar
  104. Soller, A., Goodman, B. A., Linton, F., & Gaimari, R. (1998). Promoting effective peer interaction in an intelligent collaborative learning system. In B. P. Goettl, H. M. Halff, C. L. Redfield, & V. J. Shute (Eds.), Proceedings of the 4th International Conference on Intelligent Tutoring Systems (ITS 1998) (pp. 186–195). Berlin: Springer.Google Scholar
  105. Soller, A., Monés, A. M., Jermann, P., & Mühlenbrock, M. (2005). From mirroring to guiding: A review of state of the art technology for supporting collaborative learning. International Journal on Artificial Intelligence in Education, 15, 261–290.Google Scholar
  106. Stahl, G. (2007). CSCL and its flash themes. International Journal of Computer-Supported Collaborative Learning (ijCSCL), 2(4), 359–362.Google Scholar
  107. Stegmann, K., Weinberger, A., & Fischer, F. (2007). Facilitating argumentative knowledge construction with computer-supported collaboration scripts. International Journal of Computer-Supported Collaborative Learning (ijCSCL), 2(4), 421–447.Google Scholar
  108. Suthers, D. D. (2001). Architectures for computer supported collaborative learning. In Proceedings of the IEEE International Conference on Advanced Learning Technologies (ICALT 2001) (pp. 25–28), Madison.Google Scholar
  109. Suthers, D. D. (2003). Representational guidance for collaborative inquiry. In J. Andriessen, M. J. Baker, & D. D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 27–46). Dordrecht: Kluwer Academic.Google Scholar
  110. Suthers, D. D., & Hundhausen, C. (2003). An experimental study of the effects of representational guidance on collaborative learning processes. Journal of the Learning Sciences, 12(2), 183–219.Google Scholar
  111. Suthers, D. D., Weiner, A., Connelly, J., & Paolucci, M. (1995). Belvedere: Engaging students in critical discussion of science and public policy issues. In J. Greer (Ed.), Proceedings of the 7th World Conference on Artificial Intelligence in Education (AI-ED 1995) (pp. 266–273). Charlottesville: Association for the Advancement of Computing in Education.Google Scholar
  112. Suthers, D. D., Toth, E., & Weiner, A. (1997). An integrated approach to implementing collaborative inquiry in the classroom. In R. Hall, N. Miyake, & N. Enyedy (Eds.), Proceedings of the 2nd International Conference on Computer Support for Collaborative Learning (CSCL 1997) (pp. 272–279). Toronto: University of Toronto Press.Google Scholar
  113. Suthers, D. D., Connelly, J., Lesgold, A., Paolucci, M., Toth, E. E., Toth, J., et al. (2001). Representational and advisory guidance for students learning scientific inquiry. In K. D. Forbus & P. J. Feltovich (Eds.), Smart machines in education: The coming revolution in educational technology (pp. 7–35). Menlo Park: AAAI/MIT.Google Scholar
  114. Suthers, D. D., Vatrapu, R., Medina, R., Joseph, S., & Dwyer, N. (2008). Beyond threaded discussion: Representational guidance in asynchronous collaborative learning environments. Computers & Education, 50(4), 1103–1127.Google Scholar
  115. Taentzer, G. (2001). Towards common exchange formats for graphs and graph transformation systems. Electronic Notes in Theoretical Computer Science, 44(4), 28–40.Google Scholar
  116. Tannen, D. (1998). The argument culture: Moving from debate to dialogue. New York: Random House Trade.Google Scholar
  117. Tedesco, P. (2003). MArCo: Building an artificial conflict mediator to support group planning interactions. International Journal of Artificial Intelligence in Education, 13, 117–155.Google Scholar
  118. Thagard, P. (2006). Evaluating explanations in law, science, and everyday life. Current Directions in Psychological Science, 15(3), 141–145.Google Scholar
  119. Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge University Press.Google Scholar
  120. Tsovaltzi, D., Rummel, N., McLaren, B. M., Pinkwart, N., Scheuer, O., Harrer, A., et al. (2010). Extending a virtual chemistry laboratory with a collaboration script to promote conceptual learning. International Journal of Technology Enhanced Learning (IJTEL), 2(1–2), 91–110.Google Scholar
  121. van den Braak, S., & Vreeswijk, G. (2006). AVER: Argument visualization for evidential reasoning. In T. M. van Engers (Ed.), Proceedings of the 19th Conference on Legal Knowledge and Information Systems (JURIX 2006) (pp. 151–156). Amsterdam: IOS.Google Scholar
  122. van Eemeren, F. H., & Grootendorst, R. (2004). A systematic theory of argumentation: The Pragma-Dialectical Approach. Cambridge: Cambridge University Press.Google Scholar
  123. van Gelder, T. (2002). Argument mapping with Reason!Able. The American Philosophical Association Newsletter on Philosophy and Computers, 2(1), 85–90.Google Scholar
  124. van Gelder, T. (2003). Enhancing deliberation through computer-supported argument visualization. In P. A. Kirschner, S. J. Buckingham-Shum, & C. S. Carr (Eds.), Visualizing argumentation: Software tools for collaborative and educational sense-making (pp. 97–115). London: Springer.Google Scholar
  125. van Gelder, T. (2007). The rationale for rationale. Law, Probability and Risk, 6(1–4), 23–42.Google Scholar
  126. VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Education, 16(3), 227–265.Google Scholar
  127. Vizcaino, A., Contreras, J., Favela, J., & Prieto, M. (2000). An adaptive, collaborative environment to develop good habits in programming. In G. Gauthier, C. Frasson, & K. VanLehn (Eds.), Proceedings of the 5th International Conference on Intelligent Tutoring Systems (ITS 2000) (pp. 262–271). Berlin: Springer.Google Scholar
  128. Verheij, B. (2003). Artificial argument assistants for defeasible argumentation. Artificial Intelligence, 150(1–2), 291–324.Google Scholar
  129. Voss, J. F. (2006). Toulmin’s model and the solving of ill-structured problems. In D. Hitchcock & B. Verheij (Eds.), Arguing on the Toulmin model: New essays in argument analysis and evaluation (pp. 303–311). Berlin: Springer.Google Scholar
  130. Walton, D. (2008). Informal logic: A pragmatic approach (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  131. Walton, D., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge: Cambridge University Press.Google Scholar
  132. Weinberger, A., & Fischer, F. (2006). A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Computers & Education, 46(1), 71–95.Google Scholar
  133. Wenger, E. (1987). Artificial intelligence and tutoring systems. Los Altos: Kaufmann.Google Scholar
  134. Whitehead, A. N., & Russell, B. (1910). Principia Mathematica. Cambridge: The University Press.Google Scholar
  135. Wigmore, J. H. (1931). The principles of judicial proof (2nd ed.). Boston: Little, Brown & Co.Google Scholar
  136. Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques (2nd ed.). San Francisco: Kaufmann.Google Scholar
  137. Woolf, B. P., Murray, T., Marshall, D., Dragon, T., Kohler, K., Mattingly, M., et al. (2005). Critical thinking environments for science education. In C. K. Looi, G. McCalla, B. Bredeweg, & J. Breuker (Eds.), Proceedings of the 12th International Conference on Artificial Intelligence and Education (AI-ED 2005) (pp. 702–709). Amsterdam: IOS.Google Scholar

Copyright information

© International Society of the Learning Sciences, Inc.; Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Oliver Scheuer
    • 1
  • Frank Loll
    • 2
  • Niels Pinkwart
    • 2
  • Bruce M. McLaren
    • 1
  1. 1.Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI)SaarbrückenGermany
  2. 2.Department of InformaticsClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations