How do argumentation diagrams compare when student pairs use them as a means for debate or as a tool for representing debate?

  • Kristine Lund
  • Gaëlle Molinari
  • Arnauld Séjourné
  • Michael Baker


The objective of the research presented here was to study the influence of two types of instruction for using an argumentation diagram during pedagogical debates over the Internet. In particular, we studied how using an argumentation diagram as a medium of debate compared to using an argumentation diagram as a way of representing a debate. Two groups of students produced an individual argument diagram, then debated in pairs in one of the two conditions, and finally revised their individual diagrams in light of their debate. We developed an original analysis method (ADAM) to evaluate the differences between the argumentation diagrams constructed collaboratively during the interactions that constituted the experimental conditions, as well as those constructed individually before and after debate. The results suggest a complementary relationship between the usage of argumentation diagrams in the framework of conceptual learning. First, students who were instructed to use the argumentation diagram to represent their debate were less inclined to take a position in relation to the same graphical element while collaborating. On the other hand, students who were instructed to use the argumentation diagram alongside a chat expressed more personal opinions while collaborating. Second, the instructions given to the participants regarding the use of the argumentation diagram during the collaborative phase (either for debate or for representing a chat debate) have a significant impact on the post-individual graphs. In the individual graphs revised after the collaborative phase, participants who used the graph to represent their debate added more examples, consequences and causes. It follows that a specific usage for an argumentation diagram can be chosen and instructions given based on pedagogical objectives for a given learning situation.


Argumentation diagram CSCL Socio-cognitive conflict Multiple external representations Pedagogical debate 


  1. Ainsworth, S. E. (1997). Designing and evaluating multi-representational learning environments for primary mathematics. PhD Thesis. ESRC centre for research in development, instruction and training, University of Nottingham, UK.Google Scholar
  2. Ainsworth, S. E. (1999). Designing effective multi-representational learning environments, Technical Report number 58. ESRC centre for research in development, instruction and training, University of Nottingham, UK.Google Scholar
  3. Andriessen, J. & Coirier, P. (Eds.). (1999). Foundations of argumentative text processing. Studies in writing, G. Rijlaarsdam & E. Espéret (Series Eds.). Amsterdam: Amsterdam University Press.Google Scholar
  4. Andriessen, J., Baker, M. J., & Suthers, D. (Eds.) (2003). Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments. Dordrecht, The Netherlands: Kluwer.Google Scholar
  5. Baker, M. J. (1999). Argumentation and constructive interaction. In G. Rijlaarsdam & E Espéret (Series Eds.) & Pierre Coirier and Jerry Andriessen (Vol. Eds.) Studies in writing: Vol 5. Foundations of argumentative text processing, 179–202; Amsterdam: University of Amsterdam Press.Google Scholar
  6. Baker, M. J. (2003). Computer-mediated argumentative interactions for the co-elaboration of scientific notions. In J. Andriessen, M. J. Baker & D. Suthers (Eds.) Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 47–78). Dordrecht, The Netherlands: Kluwer.Google Scholar
  7. Baker, M. J., Andriessen, J., Lund, K., van Amelsvoort, M., & Quignard, M. (2007). Rainbow: A framework for analysing computer-mediated pedagogical debates. Journal of Computer-Supported Collaborative Learning (in this issue).Google Scholar
  8. Baker, M. J., de Vries, E., Lund, K., & Quignard, M. (2001). Computer-mediated epistemic interactions for co-constructing scientific notions: Lessons learned from a five-year research programme. In P. Dillenbourg, A. Eurelings & K. Hakkarainen (Eds.) Proceedings of EuroCSCL 2001: European perspectives on computer-supported collaborative learning, (pp. 89–96). Maastricht: Maastricht McLuhan Institute.Google Scholar
  9. Baker, M. J., & Lund, K. (1997). Promoting reflective interactions in a computer-supported collaborative learning environment. Journal of Computer Assisted Learning, 13, 175–193.CrossRefGoogle Scholar
  10. Baker, M. J., Quignard, M., Lund, K., & van Amelsvoort, M. (2002). Designing a computer supported collaborative learning situation for broadening and deepening understanding of the space of debate. Proceedings of the Fifth Conference of the International Society for the Study of Argumentation (ISSA 2002) (pp. 55–61). Amsterdam, June 2002. Amsterdam: Sic Sat Publications.Google Scholar
  11. Baker, M. J., Quignard, M., Lund, K., & Séjourné, A. (2003). Computer-supported collaborative learning in the space of debate. In B. Wasson, S. Ludvigsen & U. Hoppe (Eds.), Designing for Change in Networked Learning Environments: Proceedings of the International Conference on Computer Support for Collaborative Learning 2003 (pp. 11–20). Dordrecht, The Netherlands: Kluwer.Google Scholar
  12. Chi, M. T. H., Bassok, M., Lewis, M., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145–182.CrossRefGoogle Scholar
  13. Chi, M. T., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4(1), 45–69.CrossRefGoogle Scholar
  14. Chi, M. T. H., & VanLehn, K. A. (1991). The content of physics self-explanations. Journal of the Learning Sciences, 1, 69–105.Google Scholar
  15. Corbel, A., Girardot, J. J., & Jaillon, P. (2002). DREW: A Dialogical Reasoning Web Tool, ICTE2002, Int. Conf. on ICT’s in Education. Badajoz, Espagne, 13–16 Novembre, 2002.Google Scholar
  16. Corbel, A., Jaillon, P., Serpaggi, X., Baker, M., Quignard, M., Lund, K., et al. (2003). DREW: Un outil Internet pour créer des situations d’apprentissage coopérant [DREW: An internet tool for creating cooperative learning situations]. In Desmoulins, Marquet & Bouhineau (Eds.) EIAH2003 Environnements Informatiques pour l’Apprentissage Humain, Actes de la conférence EIAH 2003, Strasbourg, 15–17 avril 2003, Paris: INRP, pp. 109–113.Google Scholar
  17. Coirier, P., & Golder, C. (1993). Writing argumentative text: A developmental study of the acquisition of supporting structures. European Journal of Psychology of Education 8(2):169–181.CrossRefGoogle Scholar
  18. De Vries, E., Lund, K., & Baker, M. (2002). Computer-mediated epistemic dialogue: Explanation and argumentation as vehicles for understanding scientific notions. The Journal of the Learning Sciences, 11, 63–103.CrossRefGoogle Scholar
  19. Dillenbourg, P. (2002). Over-scripting CSCL: The risks of blending collaborative learning with instructional design. In P. A. Kirschner (Ed). Three worlds of CSCL. Can we support CSCL (pp. 61–91). Heerlen: Open Universiteit Nederland.Google Scholar
  20. diSessa, A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10, 105–225.CrossRefGoogle Scholar
  21. Doise, W., & Mugny, G. (1981). Le développement social de l’intelligence. Paris: InterÉditions.Google Scholar
  22. Duval, R. (1995). Semiosis et pensée humaine, Bernes: Peter Lang.Google Scholar
  23. Edmondson, W. (1981). Spoken discourse: A model for analysis. London: Longman.Google Scholar
  24. Hart, A. (2001). Mann-Whitney test is not just a test of medians: Differences in spread can be important. British Medical Journal, 323, 391–393.CrossRefGoogle Scholar
  25. Jermann, P., & Dillenbourg, P. (2003). Elaborating new arguments through a CSCL script. In P. Dillenbourg (Ed.), Learning to argue (pp. 205–226). Dordrecht: Kluwer.Google Scholar
  26. Jones, B. F., Pierce, J., & Hunter, B., (1988). Teaching students to construct graphic representations. Educational Leadership, 46(4), 20–25.Google Scholar
  27. Kintsch, W., & van Dijk T. A. (1978). Toward a model of text comprehension and text production. Psychological Review, 85, 363–395.CrossRefGoogle Scholar
  28. Kenny, D. A., Kashy, D. A., & Cook, W. L. (2006). Dyadic data analysis. New York NY: Guilford.Google Scholar
  29. Marty, J.-C., Heraud, J.-M., Carron, T., & France, L. (2007). Matching the performed activity on an educational platform with a recommended pedagogical scenario: A multi-source approach. Journal of Interactive Learning Research, 18(2), 267–283.Google Scholar
  30. Molinari, G. & Tapiero, I. (2007). Integration of new domain-related states and events from texts and illustrations by subjects with high and low prior-knowledge. Learning and Instruction, 17(3), 304–321.CrossRefGoogle Scholar
  31. Munneke, L., van Amelsvoort, M., & Andriessen, J. (2003). The role of diagrams in collaborative argumentation-based learning. International Journal of Educational Research, 39, 113–131.CrossRefGoogle Scholar
  32. Quignard, M. (2000). Modélisation cognitive de l’argumentation dialoguée. Etudes de dialogues d’eleves en resolution de probleme de sciences physiques. Thèse de doctorat de sciences cognitives. Grenoble : Université Joseph Fourier. [Cognitive modelling of argumentation dialogue. Studies of students in physics problem-solving].Google Scholar
  33. Sandoval, W. A., Bell, P., Coleman, E., Enyedy, N., & Suthers, D. (2000). Designing knowledge representations for learning epistemic practices of science. Position paper for an interactive symposium entitled Designing Knowledge Representations for Learning Epistemic Practices of Science, presented at the annual meeting of the American Educational Research Association, New Oreleans, April 25, 2000.Google Scholar
  34. Séjourné, A., Baker, M., Lund, K., & Molinari, G. (2004). Schématisation argumentative et co-élaboration de connaissances: le cas des interactions médiatisées par ordinateur. Actes du colloque international «Faut-il parler pour apprendre?», pp. 1–14. Arras, Mars 2004.Google Scholar
  35. Stegmann, K., Weinberger, A., Fischer, F., & Mandl, H. (2004). Scripting argumentation in computer-supported learning environments. In P. Gerjets, P. A. Kirschner, J. Elen & R. Joiner (Eds.), Instructional design for effective and enjoyable computer-supported learning. Proceedings of the first joint meeting of the EARLI SIGs instructional design and learning and instruction with computers (CD-ROM) (pp. 320–330). Tübingen: Knowledge Media Research Center.Google Scholar
  36. Suthers, D. (2003). Representational guidance for collaborative inquiry. In J. Andriessen, M. Baker & D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 27–46). Dordrecht: Kluwer.Google Scholar
  37. Suthers, D. (2005). Collaborative knowledge construction through shared representations proceedings of the 38th Hawai’i International Conference on the System Sciences (HICSS-38), January 3–6, 2005, Waikoloa, Hawai’i (CD-ROM), Institute of Electrical and Electronics Engineers (IEEE).Google Scholar
  38. Suthers, D. D., & Hundhausen, C. D. (2003). An experimental study of the effects of representational guidance on collaborative learning processes. Journal of the Learning Sciences, 12(2), 183–218.CrossRefGoogle Scholar
  39. Suthers, D., Toth, E., & Weiner, A. (1997). An integrated approach to implementing collaborative inquiry in the classroom. Proceedings of the conference on computer supported collaborative learning: CSCL’97 (pp. 272–279). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  40. Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge University Press.Google Scholar
  41. van Amelsvoort, M., & Andriessen, J. (2003). Comparing graphical and textual preparation tools for collaborative argumentation-based learning. In B. Wasson, S. Ludvigsen & U. Hoppe (Eds.), Designing for change in networked learning environments, Proceedings of the international conference on computer support for collaborative learning (pp. 5–9), Dordrecht: Kluwer.Google Scholar
  42. Veerman, A. L., Andriessen, J. E. B., & Kanselaar, G. (2002). Collaborative argumentation in academic education. Instructional Science. 30(3), 155–186.CrossRefGoogle Scholar
  43. Vézin, J. L. (1985). Mise en relation de schémas et d’énoncés dans l’acquisition des connaissances, Bulletin de Psychologie, 368, 71–80.Google Scholar
  44. Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4(1), 71–87.CrossRefGoogle Scholar

Copyright information

© International Society of the Learning Sciences, Inc.; Springer Science+ Business Media, LLC 2007

Authors and Affiliations

  • Kristine Lund
    • 1
  • Gaëlle Molinari
    • 2
  • Arnauld Séjourné
    • 3
  • Michael Baker
    • 4
  1. 1.ICAR, ENS-LSHUniversity of Lyon, CNRSLyon CedexFrance
  2. 2.CRAFTEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.LIUM, IUFM du pays de la LoireUniversité du Maine, CNRSLE MANS Cedex 9France
  4. 4.MODYCO, Centre Andrée-Georges HaudricourtUniversity of Paris, CNRSVillejuif CedexFrance

Personalised recommendations