Specifying computer-supported collaboration scripts

  • Lars KobbeEmail author
  • Armin Weinberger
  • Pierre Dillenbourg
  • Andreas Harrer
  • Raija Hämäläinen
  • Päivi Häkkinen
  • Frank Fischer


Collaboration scripts facilitate social and cognitive processes of collaborative learning by shaping the way learners interact with each other. Computer-supported collaboration scripts generally suffer from the problem of being restrained to a specific learning platform. A standardization of collaboration scripts first requires a specification of collaboration scripts that integrates multiple perspectives from computer science, education and psychology. So far, only few and limited attempts at such specifications have been made. This paper aims to consolidate and expand these approaches in light of recent findings and to propose a generic framework for the specification of collaboration scripts. The framework enables a description of collaboration scripts using a small number of components (participants, activities, roles, resources and groups) and mechanisms (task distribution, group formation and sequencing).


Activities Collaborative learning Collaboration scripts CSCL scripts Group formation Roles Sequencing Task distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aronson, E., Blaney, N., Stephan, C., Sikes, J., & Snapp, M. (1978). The jigsaw classroom. Thousand Oaks, CA: Sage Publications.Google Scholar
  2. Baker, M. (2003). Computer-mediated argumentative interactions for the co-elaboration of scientific notions. In: J. Andriessen, M. Baker, & D. Suthers (eds.), Arguing to learn: confronting cognitions in computer-supported collaborative learning environments. (Vol. 1) (pp. 1–25). Dordrecht: Kluwer.Google Scholar
  3. Bargh, J. A., & Schul, Y. (1980). On the cognitive benefits of teaching. Journal of Educational Psychology, 72, 593–604.CrossRefGoogle Scholar
  4. Barron, B. (2003). When smart groups fail. Journal of the Learning Sciences, 12(3), 307–359.CrossRefGoogle Scholar
  5. Cohen, E. G. (1994). Restructuring the classroom: Conditions for productive small groups. Review of Educational Research, 64(1), 1–35.CrossRefGoogle Scholar
  6. Dansereau, D. F., Collins, K. W., McDonald, B. A., Holley, C. D., Garland, J. C., Diekhoff, G., et al. (1979). Development and evaluation of a learning strategy program. Journal of Educational Psychology, 71, 64–73.CrossRefGoogle Scholar
  7. Dillenbourg, P. (2002). Over-scripting CSCL: The risks of blending collaborative learning with instructional design. In: P. A. Kirschner (ed.), Three worlds of CSCL. Can we support CSCL? (pp. 61–91). Heerlen, NL: Open Universiteit Nederland.Google Scholar
  8. Dillenbourg, P., & Jermann, P. (2006). Designing integrative scripts. In: F. Fischer, I. Kollar, H. Mandl, & J. Haake (Eds.), Scripting computer-supported collaborative learning: Cognitive, computational and educational perspectives. New York: Springer.Google Scholar
  9. Fischer, F., Kollar, I., Mandl, H., & Haake, J. (eds.). (2007). Scripting computer-supported collaborative learning: Cognitive, computational and educational perspectives. New York: Springer.Google Scholar
  10. Haake, J. & Pfister, H. R. (2007). Flexible scripting in net-based learning groups. In: F. Fischer, I. Kollar, H. Mandl, & J. Haake (eds.), Scripting computer-supported collaborative learning: Cognitive, computational and educational perspectives. New York: Springer.Google Scholar
  11. Hamilton, R. J. (1997). Effects of three types of elaboration on learning concepts from text. Contemporary Educational Psychology, 22(3), 299–318.CrossRefGoogle Scholar
  12. Harrer, A., & Malzahn, N. (2006). Bridging the gap—towards a graphical modelling language for learning designs and collaboration scripts of various granularities. In: Kinshuk, R. Koper, P. Kommers, P. Kirschner, D. Sampson, & W. Didderen (eds.), Advanced learning technologies ICALT 2006 (pp. 296–300). Los Alamitos, CA: IEEE Computer Society.Google Scholar
  13. Herring, S. C. (1999). Interactional coherence in CMC. Journal of Computer-Mediated Communication, 4(4).Google Scholar
  14. King, A. (1990). Enhancing peer interaction and learning in the classroom through reciprocal questioning. American Educational Research Journal, 27(4), 664–687.CrossRefGoogle Scholar
  15. King, A. (1994). Guiding knowledge construction in the classroom: Effects of teaching children how to question and how to explain. American Educational Research Journal, 30, 338–368.CrossRefGoogle Scholar
  16. King, A. (2006). Scripting collaborative learning processes: A cognitive perspective. In: F. Fischer, I. Kollar, H. Mandl, & J. Haake (eds.), Scripting computer-supported collaborative learning: Cognitive, computational and educational perspectives. New York: Springer.Google Scholar
  17. Kollar, I., Fischer, F., & Hesse, F. (2006). Computer-supported cooperation scripts—A conceptual analysis. Educational Psychology Review, 18(2), 159–185.CrossRefGoogle Scholar
  18. Leitão, S. (2000). The potential of argument in knowledge building. Human Development (Karger), 43, 332–360.Google Scholar
  19. MOSIL (2004). Framework for integrated learning. Retrieved January 13th, 2006, from
  20. O’Donnell, A. M. (1999). Structuring dyadic interaction through scripted cooperation. In: A. M. O’Donnell, & A. King (eds.), Cognitive perspectives on peer learning. (pp. 179–196). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  21. O’Donnell, A. M., & Dansereau, D. F. (1992). Scripted cooperation in student dyads: A method for analyzing and enhancing academic learning and performance. In: R. Hertz-Lazarowitz, & N. Miller (eds.), Interaction in cooperative groups: The theoretical anatomy of group learning. (pp. 120–141). New York: Cambridge University Press.Google Scholar
  22. Palincsar, A. S., & Brown, A. L. (1994). Reciprocal teaching of comprehension-fostering and comprehension-monitoring activities. Cognition and Instruction, 1(2), 117–175.Google Scholar
  23. Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. Journal of the Learning Sciences, 13(3), 423–451.CrossRefGoogle Scholar
  24. Rosenshine, B., Meister, C., & Chapman, S. (1996). Teaching students to generate questions: A review of the intervention studies. Review of Educational Research, 66(2), 181–221.CrossRefGoogle Scholar
  25. Schwartz, D. L. (1995). The emergence of abstract representations in dyad problem solving. The Journal of the Learning Sciences, 4(3), 321–354.CrossRefGoogle Scholar
  26. Van Boxtel, C., van der Linden, J., & Kanselaar, G. (2000). Collaborative learning tasks and the elaboration of conceptual knowledge. Learning and Instruction, 10, 311–330.CrossRefGoogle Scholar
  27. Webb, N. (1989). Peer interaction and learning in small groups. International Journal of Educational Research, 13(1), 21–39.CrossRefGoogle Scholar
  28. Webb, N. M., Troper, J. D. & Fall, R. (1995). Constructive activity and learning in collaborative small groups. Journal of Educational Psychology, 87(3), 406–423.CrossRefGoogle Scholar
  29. Webb, N. M., & Palincsar, A. S. (1996). Group processes in the classroom. In: D. C. Berliner, & R. C. Calfee (eds.), Handbook of educational psychology (pp. 841–873). New York: Macmillan.Google Scholar
  30. Weinberger, A., Ertl, B., Fischer, F., & Mandl, H. (2005). Epistemic and social scripts in computer-supported collaborative learning. Instructional Science, 33(1), 1–30.CrossRefGoogle Scholar
  31. White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modelling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3–118.CrossRefGoogle Scholar

Copyright information

© International Society of the Learning Sciences, Inc.; Springer Science+ Business Media, LLC 2007

Authors and Affiliations

  • Lars Kobbe
    • 1
    Email author
  • Armin Weinberger
    • 2
  • Pierre Dillenbourg
    • 3
  • Andreas Harrer
    • 4
  • Raija Hämäläinen
    • 5
  • Päivi Häkkinen
    • 5
  • Frank Fischer
    • 2
  1. 1.Institut für Wissensmedien-Knowledge Media Research CenterTübingenGermany
  2. 2.Ludwig-Maximilians-Universität (LMU)MunichGermany
  3. 3.Swiss Federal Institute of TechnologyLausanneSwitzerland
  4. 4.University of Duisburg-EssenDuisburgGermany
  5. 5.University of JyväskyläJyväskyläFinland

Personalised recommendations