Technology affordances for intersubjective meaning making: A research agenda for CSCL

Article

Abstract

Now well into its second decade, the field of Computer-Supported Collaborative Learning (CSCL) appears healthy, encompassing a diversity of topics of study, methodologies, and representatives of various research communities. It is an appropriate time to ask: what central questions can integrate our work into a coherent field? This paper proposes the study of technology affordances for intersubjective meaning making as an integrating research agenda for CSCL. A brief survey of epistemologies of collaborative learning and forms of computer support for that learning characterize the field to be integrated and motivate the proposal. A hybrid of experimental, descriptive and design methodologies is proposed in support of this agenda. A working definition of intersubjective meaning making as joint composition of interpretations of a dynamically evolving context is provided, and used to propose a framework around which dialogue between analytic approaches can take place.

Keywords

CSCL research agenda Intersubjective meaning making Representational guidance Technology affordances 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The Journal of the Learning Sciences, 4(2), 167–207.CrossRefGoogle Scholar
  2. Andriessen, J., Baker, M., & Suthers, D. (Eds.) (2003). Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments. Dordrecht: Kluwer.Google Scholar
  3. Baker, M. (2003). Computer-mediated argumentative interactions for the co-elaboration of scientific notations. In J. Andriessen, M. Baker, & D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 47–78). Dordrecht, Netherlands: Kluwer.Google Scholar
  4. Baker, M., Hansen, T., Joiner, R., & Traum, D. (1999). The role of grounding in collaborative learning tasks. In Dillenbourg (Ed.), Collaborative learning: Cognitive and computational approaches (pp. 31–63). Amsterdam: Elsevier.Google Scholar
  5. Baker, M., & Lund, K. (1997). Promoting reflective interactions in a CSCL environment. Journal of Computer Assisted Learning, 13, 175–193.CrossRefGoogle Scholar
  6. Barab, S., & Squire, K. (2004). Design-based research: Putting a stake in the ground. Journal of the Learning Sciences, 13(1), 1–14.CrossRefGoogle Scholar
  7. Blackwell, A., & Green, T. (2003). Notational systems—The cognitive dimensions of notations framework. In J. M. Carroll (Ed.), HCI Models, theories and frameworks: Towards a multidisciplinary science (pp. 103–133). San Francisco: Mogan Kaufmann.Google Scholar
  8. Bromme, R., Hesse, F. W., & Spada, H. (Eds.) (2005). Barriers and biases in computer-mediated knowledge communication—And how they may be overcome. Dordrecht, Netherlands: Kluwer.Google Scholar
  9. Bronckart, J. P. (1995). Theories of action, speech, natural language, and discourse. In J. V. Wertsch, P. Del Rio, & A. Alvarez (Eds.), Sociocultural studies of mind (pp. 75–91). New York: Cambridge University Press.Google Scholar
  10. Button, G. Y., & Dourish, P. (1996). Technomethodology: Paradoxes and possibilities. In M. Tauber (Ed.), Proc. ACM conference on human factors in computing systems (pp. 19–26). New York: ACM.Google Scholar
  11. Clark, H. H., & Brennan, S. E. (1991). Grounding in communication. In L. B. Resnick, J. M. Levine, & S. D. Teasley (Eds.), Perspectives on socially shared cognition (pp. 127–149). Hyattsville, MD: American Psychological Association.CrossRefGoogle Scholar
  12. Colella, V. (2002). Participatory simulations: Building collaborative understanding through immersive dynamic modeling. In T. Koschmann, R. Hall, & N. Miyake (Eds.), CSCL 2: Carrying forward the conversation (pp. 357–391). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  13. Cresswell, J. W. (2003). Research design: Qualitative, quantitative, and mixed methods approaches. Thousand Oaks, CA: Sage Publications.Google Scholar
  14. Dervin, B. (2003). Chaos, order, and sense-making: A proposed theory for information design. In B. Dervin, L. Foreman-Wernet, E. Lauterbach (Eds.), Sense-making methodology reader selected writings of Brenda Dervin (pp. 325–340). Cresskill, NJ: Hampton.Google Scholar
  15. Dillenbourg, P. (1999). What do you mean by “collaborative learning”? In P. Dillenbourg (Ed.), Collaborative learning: Cognitive and computational approaches. (pp. 1–19). Amsterdam, Netherlands: Elsevier.Google Scholar
  16. Dillenbourg, P. (2002). Over-scripting CSCL: The risks of blending collaborative learning with instructional design. In P. A. Kirschner (Ed.), Three worlds of CSCL. Can we support CSCL? (pp. 61–91). Heerlen: Open Universiteit Nederland.Google Scholar
  17. Dillenbourg, P. (2005). Designing biases that augment socio-cognitive interactions. In R. Bromme, F. W. Hesse, & H. Spada (Eds.), Barriers and biases in computer-mediated knowledge communication—And how they may be overcome (pp. 243–264). Dordrecht, Netherlands: Kluwer.CrossRefGoogle Scholar
  18. Doise, W., & Mugny, G. (1984). The social development of the intellect. Oxford: Pergamon.Google Scholar
  19. Dwyer, N., & Suthers, D. (2005). A study of the foundations of artifact-mediated collaboration. In T. Koschmann, D. Suthers, & T. W. Chan (Eds.), Proceedings of CSCL 2005: The next 10 years! (pp. 135–144.) Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  20. Engeström, Y. (2001) Expansive learning at work: Toward an activity theoretical reconceptualization. Journal of Education and Work, 14(1), 133–156.CrossRefGoogle Scholar
  21. Erickson, T., & Kellogg, W. A. (2000). Social translucence: An approach to designing systems that support social processes. ACM Transactions on Computer-Human Interaction, 7(1), 59–83.CrossRefGoogle Scholar
  22. Festinger, L. (1957). A theory of cognitive dissonance. Palo Alto: Stanford University Press.Google Scholar
  23. Fischer, G., & Ostwald, J. (2005). Knowledge communication in design communities. In R. Bromme, F. W. Hesse, & H. Spada (Eds.), Barriers and biases in computer-mediated knowledge communication—And how they may be overcome (pp. 213–242). Dordrecht, Netherlands: Kluwer.CrossRefGoogle Scholar
  24. Gibson, J. J. (1977). The theory of affordances. In R. Shaw & J. Bransford (Eds.), Perceiving, acting and knowing (pp. 67–82). Hillsdale, NJ: Erlbaum.Google Scholar
  25. Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. Chicago: Aldine.Google Scholar
  26. Goldman, R., Crosby, M., Swan, K., & Shea, P. (2004). Introducing quisitive research: Expanding qualitative methods for describing learning in ALN. In R. Starr Hiltz & R. Goldman (Eds.), Learning together online: Research on asynchronous learning networks (pp. 103–121). Mahwah, New Jersey: LEA.Google Scholar
  27. Guzdial, M., Hmelo, C., Hubscher, R., Newstetter, W., Puntambekar, S., Shabo, A., et al. (1997). Integrating and guiding collaboration: Lessons learned in computer-supported collaboration learning research at Georgia Tech. In R. Hall, N. Miyake, & N. Enyedy (Eds.), Proceedings of computer support for collaborative learning 1997 (pp. 91–100). Toronto: University of Toronto.Google Scholar
  28. Häkkinen, P., Järvelä, S., & Mäkitalo, K. (2003). Sharing perspectives in virtual interaction: Review of methods of analysis. In B. Wasson, S. Ludvigsen, & U. Hoppe (Eds.), Proceedings of CSCL 2003: Designing for change in networked learning environments (pp. 395–404). Dordrecht: Kluwer.Google Scholar
  29. Hansen, T., Dirckinck-Holmfeld, L., Lewis, R., & Rugelj, J. (1999). Using telematics for collaborative knowledge construction. In P. Dillenbourg (Ed.), Collaborative learning: Cognitive and computational approaches (pp. 169–196). Amsterdam, Netherlands: Elsevier.Google Scholar
  30. Hermann, D. (Ed.) (2003). Narrative theory and the cognitive sciences. Stanford, CA: Center for the Study of Language and Information.Google Scholar
  31. Hollan, J., Hutchins, E., & Kirsh, D. (2002). Distributed cognition: Toward a new foundation for human-computer interaction research. In J. M. Carroll (Ed.), Human–computer interaction in the new millennium (pp. 75–94). New York: ACM/Addison Wesley. (Reprinted from ACM Transactions on Computer–Human Interaction, 7(2), June 2000.).Google Scholar
  32. Hollan, J., & Stornetta, S. (1992). Beyond being there. In P. Bauersfeld, J. Bennett, & G. Lynch (Eds.), Proceedings of the SIGCHI conference on human factors in computing systems (pp. 119–125). New York: ACM.Google Scholar
  33. Jermann, P., & Dillenbourg, P. (2003). Elaborating new arguments through a CSCL script. In J. Andriessen, M. Baker, & D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 205–226). Dordrecht: Kluwer.Google Scholar
  34. Jermann, P., Soller, A., & Lesgold, A. (2004). Computer software support for CSCL. In J. W. Strijbos, P. A. Kirschner, & R. L. Martens (Eds.), What we know about CSCL and implementing it in higher education (pp. 141–166). Dordrecht: Kluwer.CrossRefGoogle Scholar
  35. Johnson, R. B, & Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm whose time has come. Educational Researcher, 33(7), 14–26.Google Scholar
  36. Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. Journal of the Learning Sciences, 4(1), 39–103.CrossRefGoogle Scholar
  37. Kaput, J., & Hegedus, S. (2002). Exploiting classroom connectivity by aggregating student constructions to create new learning opportunities. In A. D. Cockburn & E. Nardi (Eds.), Proceedings of the 26th annual conference of the international group for the psychology of mathematics education, vol. 3 (pp. 177–184). University of East Anglia: Norwich, UK.Google Scholar
  38. Kato, H., Yamazaki, K., Suzuki, H., Kuzuoka, H., Miki, H., & Yamazaki, A. (2001). Designing a video-mediated collaboration system based on a body metaphor. In T. Koschmann, R. Hall, & N. Miyake (Eds.), CSCL 2: Carrying forward the conversation (pp. 409–423). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  39. Kirschner, P. A., Martens, R. L., & Strijbos, J. W. (2004). CSCL in higher education? A framework for designing multiple collaborative environments. In J. W. Strijbos, P. A. Kirschner, & R. L. Martens (Eds.), What we know about CSCL and implementing it in higher education (pp. 3–30). Dordrecht: Kluwer.CrossRefGoogle Scholar
  40. Koschmann, T. (2002). Dewey’s contribution to the foundations of CSCL research. In G. Stahl (Ed.), Proceedings of CSCL 2002: Foundations for a CSCL community (pp. 17–22). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  41. Koschmann, T., & LeBaron, C. (2003). Reconsidering common ground: Examining Clark’s contribution theory in the OR. In K. Kuutti, E. Karsten, G. Fitzpatrick, P. Dourish, & K. Schmidt (Eds.), ECSCW 2003: Proc. Eighth European conference on computer-supported cooperative work. Amsterdam: Kluwer.Google Scholar
  42. Koschmann, T., Stahl, G., & Zemel, A. (2004). The video analyst’s manifesto (or the implications of Garfinkel’s policies for the development of a program of video analytic research within the learning sciences). In Y. Kafai, W. Sandoval, N. Enyedy, A. Nixon, & F. Herrera (Eds.), Proceedings of the sixth international conference of the learning sciences (pp. 278–285). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  43. Koschmann, T., Zemel, A., Conlee-Stevens, M., Young, N., Robbs, J., & Barnhart, A. (2003). Problematizing the problem: A single case analysis in a dPBL Meeting. In B. Wasson, S. Ludvigsen, & U. Hoppe (Eds.), Proceedings of CSCL 2003: Designing for change in networked learning environments (pp. 37–46). Dordrecht, Netherlands: Kluwer.Google Scholar
  44. Koschmann, T., Zemel, A., Conlee-Stevens, M., Young, N., Robbs, J., & Barnhart, A. (2005). How do people learn? Members’ methods and communicative mediation. In R. Bromme, F. W. Hesse, & H. Spada (Eds.), Barriers and biases in computer-mediated knowledge communication—And how they may be overcome (pp. 265–294). Dordrecht, Netherlands: Kluwer.CrossRefGoogle Scholar
  45. Kreijns, K., & Kirschner, P. A. (2004). Designing sociable CSCL environments. In Strijbos, Kirschner, & Martens (Eds.), What we know about CSCL and implementing it in higher education (pp. 221–243). Dordrecht, Netherlands: Kluwer.CrossRefGoogle Scholar
  46. Latour, B. (1990). Drawing things together. In M. Lynch & S. Woolgar (Eds.), Representation in scientific practice (pp. 19–68.). Cambridge, MA: MIT.Google Scholar
  47. Lave, J., & Wenger, E. (1991). Situated learning: legitimate peripheral participation. Cambridge: Cambridge University Press.Google Scholar
  48. Lingnau, A., Hoppe, H. U., Mannhaupt, G. (2003). Computer supported collaborative writing in an early learning classroom. Journal of Computer Assisted Learning, 19(2), 186–194.CrossRefGoogle Scholar
  49. Matusov, E. (1996). Intersubjectivity without agreement. Mind, Culture and Activity, 3(1), 25–45.CrossRefGoogle Scholar
  50. Norman, D. N. (1999). Affordance, conventions, and design. ACM interactions, 6(3), 38–43.CrossRefGoogle Scholar
  51. Nunberg, G. (1993). Indexicality and deixis. Linguistics and Philosophy, 16(1), 1–43.CrossRefGoogle Scholar
  52. Olson, G. M., & Olson, J. S. (2000). Distance matters. Human–computer interaction, 15(2/3), 139–178. (Reprinted in: J. M Carroll (Ed.), (2002). Human–computer interaction in the new Millennum (pp. 397–417). New York: ACM.CrossRefGoogle Scholar
  53. Pfister, H. R. (2005). How to support synchronous net-based learning discourses: Principles and perspectives. In R. Bromme, F. W. Hesse, & H. Spada (Eds.), Barriers and biases in computer-mediated knowledge communication—And how they may be overcome (pp. 39–58). Dordrecht, Netherlands: Kluwer.CrossRefGoogle Scholar
  54. Piaget, J. (1976). The grasp of consciousness: Action and concept in the young child. Cambridge, MA: Harvard University Press.Google Scholar
  55. Resnick, P. (2002). Beyond bowling together: Sociotechnical capital. In J. M. Carroll (Ed.), Human–computer interaction in the new millennium (pp. 647–672). New York: ACM Addison Wesley.Google Scholar
  56. Rieber, L. P. (2004). Microworlds. In D. Jonassen (Ed.), Handbook of research for educational communications and technology (2nd ed.) (pp. 583–603). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  57. Robertson, J, Good, J., Pain, H. (1998). BetterBlether: The design and evaluation of a discussion tool for education. International Journal of Artificial Intelligence in Education, 9 Online: http://cbl.leeds.ac.uk/ijaied/abstracts/Vol_9/robertson.html.
  58. Rogoff, B. (1995). Observing sociocultural activity on three planes: Participatory appropriation, guided participation, and apprenticeship. In J. V. Wertsch, P. Del Rio, & A. Alvarez (Eds.), Sociocultural studies of mind (pp. 139–164). New York: Cambridge University Press.Google Scholar
  59. Roschelle, J. (1994, May). Designing for cognitive communication: Epistemic fidelity or mediating collaborative inquiry? The Arachnet Electronic Journal of Virtual Culture, 2(2) Retrieved from http://www.infomotions.com/serials/aejvc/aejvc-v2n02-roschelle-designing.txt.
  60. Roschelle, J., & Teasley, S. D. (1995). The construction of shared knowledge in collaborative problem solving. In C. E. O’Malley (Ed.), Computer supported collaborative learning (pp. 69–197). Berlin Heidelberg New York: Springer.Google Scholar
  61. Rummel, N., & Spada, H. (2005). Sustainable support for computer-mediated collaboration. How to achieve and how to assess it. In R. Bromme, F. W. Hesse, & H. Spada (Eds.), Barriers and biases in computer-mediated knowledge communication—And how they may be overcome. Dordrecht, Netherlands: Kluwer.Google Scholar
  62. Sacks, H., Schegloff, E. A., & Jefferson, G. (1974). A simplest systematics for the organization of turn-taking in conversation. Language, 50(4), 696–735.CrossRefGoogle Scholar
  63. Salomon, G. (Ed.) (1993). Distributed cognitions: Psychological and educational considerations. Cambridge: Cambridge University Press.Google Scholar
  64. Scardamalia, M., & Bereiter, C. (1991). Higher levels of agency for children in knowledge building: A challenge for the design of new knowledge media. The Journal of the Learning Sciences, 1(1), 37–68.Google Scholar
  65. Shaffer, D. W., & Clinton, K. A. (2005). Why all CSL is CL: Distributed mind and the future of computer supported collaborative learning. In T. Koschmann, D. Suthers, & T. W. Chan (Eds.), Proceedings of CSCL 2005: The next 10 years! (pp. 592–601). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  66. Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1–22.Google Scholar
  67. Slavin, R. E. (1995). Cooperative learning: Theory, research and practice, (2nd ed.). Boston, MA: Allyn & Bacon.Google Scholar
  68. Smolka, A. L. B., De Goes, M. C. R., & Pino, A. (1995). The constitution of the subject: A persistent question. In J. V. Wertsch, P. Del Rio, & A. Alvarez (Eds.), Sociocultural studies of mind (pp. 165–184). New York: Cambridge University Press.Google Scholar
  69. Stahl, G. (2000). Collaborative information environments to support knowledge construction by communities. AI & Society, 14, 71–97.CrossRefGoogle Scholar
  70. Stahl, G. (2004). Building collaborative knowing: Elements of a social theory of CSCL. In J. W. Strijbos, P. A. Kirschner, & R. L. Martens, (Eds.), What we know about CSCL and implementing it in higher education (pp. 53–86). Dordrecht, Netherlands: Kluwer.CrossRefGoogle Scholar
  71. Stahl, G. (2006). Group cognition: Computer support for building collaborative knowledge. Cambridge, MA: MIT.Google Scholar
  72. Star, S. L. (1990). The structure of ill-structured solutions: Boundary objects and heterogeneous distributed problem solving. In L. Gasser & M. N. Huhns (Eds.), Distributed artificial intelligence: vol. 2 (pp. 37–54). San Francisco, CA: Morgan Kaufmann.Google Scholar
  73. Suthers, D. (2006). A qualitative analysis of collaborative knowledge construction through shared representations. Research and Practice in Technology Enhanced Learning, 1(2), 1–28.Google Scholar
  74. Suthers, D., Girardeau, L., & Hundhausen, C. (2003). Deictic roles of external representations in face-to-face and online collaboration. Proceedings of CSCL 2003: Designing for change in networked learning environments (pp. 173–182). Dordrecht: Kluwer.Google Scholar
  75. Suthers, D., & Hundhausen, C. (2003). An empirical study of the effects of representational guidance on collaborative learning. Journal of the Learning Sciences, 12(2), 183–219.CrossRefGoogle Scholar
  76. Sweller, J., van Merriënboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–296.CrossRefGoogle Scholar
  77. Toth, E., Suthers, D., & Lesgold, A. (2002). Mapping to know: The effects of evidence maps and reflective assessment on scientific inquiry skills. Science Education, 86(2), 264–286.CrossRefGoogle Scholar
  78. van der Pol, J., Admiraal, W., & Simons, R.-J. (2003). Grounding in electronic discussions: Standard (threaded) versus anchored discussion. In B. Wasson, S. Ludvigsen, & U. Hoppe (Eds.), Proceedings of CSCL 2003: Designing for change in networked learning environments (pp. 77–81). Dordrecht, Netherlands: Kluwer.Google Scholar
  79. von Glasersfeld, E., (1995). A constructivist approach to teaching. In L. Steffe & J. Gale (Eds.), Constructivism in education (pp. 3–16). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  80. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press. (Originally published in 1930.)Google Scholar
  81. Wartofsky, M. (1979). Models, representation and scientific understanding. Boston, MA: Reidel.Google Scholar
  82. Wegerif, R. (2006). A dialogic understanding of the relationship between CSCL and teaching thinking skills. International Journal of Computer-Supported Collaborative Learning, 1(1), 143–157.CrossRefGoogle Scholar
  83. Weinberger, A., Reiserer, M., Ertl, B., Fischer, F., & Mandl, H. (2005). Facilitating collaborative knowledge construction in computer-mediated learning environments with cooperation scripts. In R. Bromme, F. W. Hesse, & H. Spada (Eds.), Barriers and biases in computer-mediated knowledge communication—And how they may be overcome. Dordrecht, Netherlands: Kluwer.Google Scholar
  84. Wenger, E. (1987). Artificial intelligence and tutoring systems: Computational and cognitive approaches to the communication of knowledge. Los Altos, CA: Morgan Kaufmann.Google Scholar
  85. Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge: Cambridge University Press.Google Scholar
  86. Wenger, E., McDermott, R., & Snyder, W. (2002). Cultivating communities of practice: A guide to managing knowledge. Boston, MA: Harvard Business School.Google Scholar
  87. Whitworth, B., Gallupe, B., & McQueen, R. (2000). A cognitive three-process model of computer-mediated group interaction. Group Decision and Negotiation, 9, 431–456.CrossRefGoogle Scholar
  88. Yukawa, J. (2006). Co-reflection in online learning: Collaborative critical thinking as narrative. Computer-Supported Collaborative Learning, 1(2), 203–228.CrossRefGoogle Scholar

Copyright information

© International Society of the Learning Sciences, Inc.; Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Information and Computer SciencesUniversity of HawaiiHonoluluUSA

Personalised recommendations