Financial Markets and Portfolio Management

, Volume 26, Issue 4, pp 469–494 | Cite as

Portfolio risk management in a data-rich environment

  • Mohammed Bouaddi
  • Abderrahim TaamoutiEmail author


We study risk assessment using an optimal portfolio in which the weights are functions of latent factors and firm-specific characteristics (hereafter, diffusion index portfolio). The factors are used to summarize the information contained in a large set of economic data and thus reflect the state of the economy. First, we evaluate the performance of the diffusion index portfolio and compare it to both that of a portfolio in which the weights depend only on firm-specific characteristics and an equally weighted portfolio. We then use value-at-risk, expected shortfall, and downside probability to investigate whether the weights-modeling approach, which is based on factor analysis, helps reduce market risk. Our empirical results clearly indicate that using economic factors together with firm-specific characteristics helps protect investors against market risk.


Portfolio weights modeling Factor analysis Principal components Portfolio performance Value-at-risk Expected shortfall Downside probability 

JEL Classification

C13 C43 G11 G19 



We thank an anonymous referee and the Co-Editor Markus Schmid for their very helpful comments. We also thank Kenneth French and Mark Watson for making the data available to us. The first author acknowledges financial support from IFM2, Montreal, and the second author acknowledges financial support from the Spanish Ministry of Education through Grants SEJ 2011-0031-001.


  1. Amemiya, Y.: Instrumental variable estimation for nonlinear factor analysis. In: Cuadras, C.M., Rao, C.R. (eds.) Multivariate Analysis: Future Directions, vol. 2, pp. 113–129 Amesterdam, Elsevier (1993a)Google Scholar
  2. Amemiya, Y.: On nonlinear factor analysis. Proc Soc Stat Sect Annu Meet Am Stat Assoc 92–96, 290–294 (1993b)Google Scholar
  3. Amemiya, Y., Yalcin, I.: Nonlinear factor analysis as a statistical method. Stat Sci 16, 275–294 (2001)CrossRefGoogle Scholar
  4. Bai, J., Ng, S.: Determining the number of factors in approximate factor models. Econometrica 70, 191–221 (2002)CrossRefGoogle Scholar
  5. Bai, J., Ng, S.: Confidence intervals for diffusion index forecasts and inference for factor-augmented regressions. Econometrica 74, 1133–1150 (2006)CrossRefGoogle Scholar
  6. Benzoni, L., Collin-Dufresne, P., Goldstein, R.S.: Portfolio choice over the life-cycle when the stock and labor markets are cointegrated. J Finance 62, 2123–2167 (2007)CrossRefGoogle Scholar
  7. Bernanke, B., Kuttner, K.: What explains the stock market’s reaction to Federal Reserve policy. J Finance 60, 1221–1257 (2005)CrossRefGoogle Scholar
  8. Bouaddi, M., Taamouti, A.: Portfolio selection in a data-rich environment. Universidad Carlos III de Madrid Working Paper (2011)Google Scholar
  9. Brandt, M.W., Santa-Clara, P.: Dynamic portfolio selection by augmenting the asset space. J Finance 61, 2187–2217 (2006)CrossRefGoogle Scholar
  10. Brandt, M.W., Santa-Clara, P., Valkanov, R.: Parametric portfolio policies: exploiting characteristics in the cross section of equity returns. Rev Financial Stud 22, 3411–3447 (2009)CrossRefGoogle Scholar
  11. Briec, W., Kerstens, K., Jokung, O.: Mean-variance-skewness portfolio performance gauging: a general shortage function and dual approach. Manag Sci 53, 135–149 (2007)CrossRefGoogle Scholar
  12. Brodie, J., Daubechies, I., De Mol, C., Giannone, D., Loris, I.: Sparse and stable Markowitz portfolios. PNAS 106, 12267–12272 (2009)CrossRefGoogle Scholar
  13. Cascon, A., Keating, C., Shadwick, W.: The Omega function. Finance Development Centre, London (2003)Google Scholar
  14. Cochrane, J.H., Piazzesi, M.: Bond risk premia. Am Econ Rev 95, 138–160 (2005)CrossRefGoogle Scholar
  15. Farinelli, S., Tibiletti, L.: Sharpe thinking in asset ranking with one-sided measures. Eur J Oper Res 185, 1542–1547 (2008)CrossRefGoogle Scholar
  16. Flannery, M.J., Protopapadakis, A.A.: Macroeconomic factors do influence aggregate stock returns. Rev Financial Stud 15, 751–782 (2002)CrossRefGoogle Scholar
  17. Gregoriou, A., Kontonikas, A., MacDonald, R., Montagnoli, A.: Monetary policy shocks and stock returns: evidence from the British market. Financial Markets Portfolio Manag 23, 401–410 (2009)CrossRefGoogle Scholar
  18. He, J., Ng, L.: Economic forces, fundamental variables, and equity returns. J Bus 67, 599–609 (1994)CrossRefGoogle Scholar
  19. Hess, M.: Sector specific impacts of macroeconomic fundamentals on the Swiss stock market. Financial Markets Portfolio Manag 17, 234–245 (2003)CrossRefGoogle Scholar
  20. Hildebrand, P.M.: Monetary policy and financial markets. Financial Markets Portfolio Manag 20, 7–18 (2006)CrossRefGoogle Scholar
  21. Katzur, T., Spierdijk, L.: Stock returns and inflation risk: implications for portfolio selection. University of Groningen Working Paper (2010)Google Scholar
  22. Konrad, E.: The impact of monetary policy surprises on asset return volatility: the case of Germany. Financial Markets Portfolio Manag 23, 111–135 (2009)CrossRefGoogle Scholar
  23. Ludvigson, S.C., Ng, S.: Macro factors in bond risk premia. Rev Financial Stud 22, 5027–5067 (2009)CrossRefGoogle Scholar
  24. Markowitz, H.: Portfolio selection. J Finance 7, 77–91 (1952)Google Scholar
  25. Rangvid, J.: Output and expected returns. J Financial Econ 81, 595–624 (2006)CrossRefGoogle Scholar
  26. Rigobon, R., Sack, B.: Measuring the reaction of monetary policy to the stock market. Q J Econ 118, 639–670 (2003)CrossRefGoogle Scholar
  27. Sharpe, W.F.: Mutual fund performance. J Bus 39, 119–138 (1966)CrossRefGoogle Scholar
  28. Sortino, F., van der Meer, R., Plantinga, A.: The Dutch triangle. J Portfolio Manag 26, 50–57 (1999)CrossRefGoogle Scholar
  29. Specht, K., Gohout, W.: Portfolio selection using the principal components GARCH model. Financial Markets Portfolio Manag 17, 450–458 (2003)CrossRefGoogle Scholar
  30. Stock, J.H., Watson, M.W.: Macroeconomic forecasting using diffusion indexes. J Bus Econ Stat 20, 147–162 (2002a)CrossRefGoogle Scholar
  31. Stock, J.H., Watson, M.W.: Forecasting using principal components from a large number of predictors. J Am Stat Assoc 97, 1167–1179 (2002b)CrossRefGoogle Scholar

Copyright information

© Swiss Society for Financial Market Research 2012

Authors and Affiliations

  1. 1.Economics DepartmentAmerican University in CairoNew CairoEgypt
  2. 2.Departamento de EconomíaUniversidad Carlos III de MadridGetafe (Madrid)Spain

Personalised recommendations