Financial Markets and Portfolio Management

, Volume 24, Issue 2, pp 193–213 | Cite as

Pair-copulas modeling in finance

  • Beatriz Vaz de Melo Mendes
  • Mariângela Mendes Semeraro
  • Ricardo P. Câmara Leal


This paper concerns itself with applications of pair-copulas in finance, and bridges the gap between theory and application. We provide a broad view of the problem of modeling multivariate financial log-returns using pair-copulas, gathering together for this purpose theoretical and computational results from the literature on canonical vines. From the practitioner’s viewpoint, the paper shows the advantages of modeling through pair-copulas and makes clear that it is possible to implement this methodology on a daily basis. All the necessary steps (model selection, estimation, validation, simulations, and applications) are discussed at a level easily understood by all data analysts.


Pair-copulas Multivariate modeling Markowitz mean variance model 

JEL Classification

C16 C51 G11 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aas, K., Czado, C., Frigessi, A., Bakken, H.: Pair-copula constructions of multiple dependence. Insur.: Math. Econ. 2, 1–25 (2007) Google Scholar
  2. Bedford, T., Cooke, R.M.: Probability density decomposition for conditionally dependent random variables modeled by vines. Ann. Math. Artif. Intell. 32, 245–268 (2001) CrossRefGoogle Scholar
  3. Bedford, T., Cooke, R.M.: Vines—a new graphical model for dependent random variables. Ann. Stat. 30, 1031–1068 (2002) CrossRefGoogle Scholar
  4. Berg, D., Aas, K.: Models for construction of multivariate dependence: a comparison study. Eur. J. Finance, forthcoming (2008) Google Scholar
  5. Breyman, W., Dias, A., Embrechts, P.: Dependence structures for multivariate high-frequency data in finance. Quant. Finance 3, 1–16 (2003) CrossRefGoogle Scholar
  6. Cooke, R.M., Bedford, T.: Reliability Methods as Management Tools: Dependence Modeling and Partial Mission Success. Chameleon Press, London (1995) Google Scholar
  7. Demarta, S., McNeil, A.: The t Copula and related Copulas. Int. Stat. Rev. 73, 111–129 (2005) CrossRefGoogle Scholar
  8. Embrechts, P., McNeil, A., Straumann, D.: Correlation and dependence in risk management: properties and pitfalls. Preprint ETH Zurich (1999) Google Scholar
  9. Embrechts, P., McNeil, A., Straumann, D.: Correlation and dependency in risk management: properties and pitfalls. In: Value at Risk and Beyond, pp. 176–223. Cambridge University Press, Cambridge (2001) Google Scholar
  10. Fantazzini, D.: Dynamic copula modelling for value-at-risk. Frontiers in Finance and Economics. Available at SSRN: (2006)
  11. Fermanian, J.-D.: Goodness-of-fit tests for copulas. J. Multivar. Anal. Arch. 95(1), 119–152 (2005) CrossRefGoogle Scholar
  12. Fischer, M., Köck, C., Schlüter, S., Weigert, F.: Multivariate copula models at work: outperforming the ‘Desert Island Copula’? Universität Erlangen (2008) Google Scholar
  13. Gatzert, N., Schmeiser, H., Schuckmann, S.: Enterprise risk management in financial group: analysis of risk concentration and default risk. Financ. Mark. Portf. Manag. 22(3), 241–258 (2008) CrossRefGoogle Scholar
  14. Genest, C., Rémillard, B.: Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Technical Report G-2005-51, GERAD, Montreal, Canada (2005) Google Scholar
  15. Genest, C., Quessy, J.F., Rémillard, B.: Goodness-of-fit procedures for copula models based on the probability integral transformation. Scand. J. Stat. 33, 337–366 (2006) CrossRefGoogle Scholar
  16. Genest, C., Rémillard, B., Beaudoin, D.: Omnibus goodness-of-fit tests for copulas. A review and a power study. Working paper, Université Laval (2007) Google Scholar
  17. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J.: Robust Statistics: The Approach Based on Influence Functions. Willey, New York (1986) Google Scholar
  18. Hansen, B.: Autoregressive conditional density estimation. Int. Econ. Rev. 35, 705–730 (1994) CrossRefGoogle Scholar
  19. Joe, H.: Families of m-variate distributions with given margins and m(m−1)/2 bivariate dependence parameters. In: Rüchendorf, L., Schweizer, B., Taylor, M.D. (eds.) Distributions with Fixed Marginals and Related Topics (1996) Google Scholar
  20. Joe, H.: Multivariate Models and Dependence Concepts. Chapman & Hall, London (1997) CrossRefGoogle Scholar
  21. Joe, H., Li, H., Nikoloulopoulos, A.K.: Tail dependence functions and vine copulas. J. Multivar. Anal. 101, 252–270 (2010) CrossRefGoogle Scholar
  22. Kassberger, S., Kiesel, R.: A fully parametric approach to return modeling and risk management of hedge funds. Financ. Mark. Portf. Manag. 20, 472–491 (2006) CrossRefGoogle Scholar
  23. Kurowicka, D., Cooke, R.M.: Conditional, partial, and rank correlation for the elliptical copula: dependence modeling in uncertainty analysis. In: Proceedings ESREL (2001) Google Scholar
  24. Kurowicka, D., Cooke, R.M.: Completion problem with partial correlation vines. Linear Algebra Its Appl. 418, 188–200 (2006) CrossRefGoogle Scholar
  25. Mendes, B.V.M., Leal, R.P.C.: Robust multivariate modeling in finance. Int. J. Manag. Finance 1, 95–106 (2005) Google Scholar
  26. Mendes, B.V.M., Leal, R.P.C.: Portfolio management with semi-parametric bootstrapping. J. Risk Manag. Financ. Inst. 3, 174–183 (2009) Google Scholar
  27. Mendes, B.V.M., Melo, E.F.L., Nelsen, R.B.: Robust fits for copula models. Commun. Stat. 36, 997–1017 (2007) CrossRefGoogle Scholar
  28. Min, A., Czado, C.: Bayesian inference for multivariate copulas using pair-copula constructions. J. Financ. Econ., forthcoming (2010) Google Scholar
  29. Misiewicz, J., Kurowicka, D., Cooke, R.M.: Elliptical copulae. In: Schueller, Spanos (eds.) Monte Carlo Simulation. A.A. Balkema, Rotterdam (2001) Google Scholar
  30. Patton, A.: Modeling asymmetric exchange rate dependence. Int. Econ. Rev. 47, 527–556 (2006) CrossRefGoogle Scholar
  31. Ragea, V.: Testing correlation stability during hectic financial markets. Financ. Mark. Portf. Manag. 17, 289–308 (2003) CrossRefGoogle Scholar
  32. Rockinger, M., Jondeau, E.: Conditional dependency of financial series: an application of copulas. In: HEC Paris DP 723 Google Scholar
  33. Rosenblatt, M.: Remarks on a multivariate transformation. Ann. Math. Stat. 23, 470–472 (1952) CrossRefGoogle Scholar
  34. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley, New York (1987) CrossRefGoogle Scholar
  35. Scott, D.W.: Multivariate Density Estimation. Wiley, New York (1992) CrossRefGoogle Scholar
  36. Scherer, B., Martin, R.D.: Introduction to Modern Optimization with Nuopt and SPlus. Springer, Berlin (2005) CrossRefGoogle Scholar
  37. Sklar, A.: Fonctions de répartition á n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 8, 229–231 (1959) Google Scholar
  38. Tsukahara, H.: Semiparametric estimation in copula models. Can. J. Stat. 33(3), 357–375 (2005) CrossRefGoogle Scholar
  39. Yule, G.U., Kendall, M.G.: An Introduction to the Theory of Statistics, 14th edn. Charles Griffin, London (1965) Google Scholar
  40. Vandenhende, F., Lambert, P.: Local dependence estimation using semiparametric Archimedean copulas. Can. J. Stat. 33(3), 377–388 (2005) CrossRefGoogle Scholar

Copyright information

© Swiss Society for Financial Market Research 2010

Authors and Affiliations

  • Beatriz Vaz de Melo Mendes
    • 1
  • Mariângela Mendes Semeraro
    • 1
  • Ricardo P. Câmara Leal
    • 2
  1. 1.IM/COPPEADFederal University at Rio de JaneiroRio de JaneiroBrazil
  2. 2.COPPEADFederal University at Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations