Financial Markets and Portfolio Management

, Volume 21, Issue 4, pp 425–444 | Cite as

The tactical and strategic value of hedge fund strategies: a cointegration approach

  • Roland Füss
  • Dieter G. Kaiser


This paper analyzes long-term comovements between hedge fund strategies and traditional asset classes using multivariate cointegration methodology. Since cointegrated assets are tied together over the long run, a portfolio consisting of these assets will have lower long-term volatility. Thus, if the presence of cointegration lowers uncertainty, risk-averse investors should prefer assets that are cointegrated. Long-term (passive) investors can benefit from the knowledge of cointegrating relationships, while the built-in error correction mechanism allows active asset managers to anticipate short-run price movements. The empirical results indicate there is a long-run relationship between specific hedge fund strategies and traditional financial assets. Thus, the benefits of different hedge fund strategies are much less than suggested by correlation analysis and portfolio optimization. However, certain strategies combined with specific stock market segments offer portfolio managers adequate diversification potential, especially in the framework of tactical asset allocation.


Hedge fund strategies Stock markets Tactical and strategic asset allocation Portfolio optimization Multivariate cointegration analysis Johansen test 


C32 G11 G15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, C.O.: Market Models: a Guide to Financial Data Analysis. Wiley, New York (2001) Google Scholar
  2. Arshanapalli, B., Doukas, J.: International stock market linkage: evidence from pre- and post-October 1987 period. J. Bank. Finance 17(1), 193–208 (1993) Google Scholar
  3. Bossaerts, P.: Common nonstationary components of asset prices. J. Econ. Dyn. Control 12(2/3), 347–364 (1988) Google Scholar
  4. Brooks, C., Kat, H.M.: The statistical properties of hedge fund index returns and their implications for investors. J. Altern. Invest. 5(2), 26–44 (2002) Google Scholar
  5. Chaudhuri, K.: Cointegration, error correction and Granger causality: an application with Latin American stock markets. Appl. Econ. Lett. 4(8), 469–471 (1997) Google Scholar
  6. Chen, G.-M., Firth, M., Rui, O.M.: Stock market linkages: evidence from Latin America. J. Bank. Finance 26(6), 1113–1141 (2002) Google Scholar
  7. Corhay, A., Rad, A.T., Urbain, J.-P.: Common stochastic trends in European stock markets. Econ. Lett. 42(4), 385–390 (1993) Google Scholar
  8. Dahlquist, M., Harvey, C.R.: Global tactical asset allocation. Emerg. Mark. Q. 5(1), 1–16 (2001) Google Scholar
  9. Dickey, D.A., Fuller, W.A.: Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 74(366), 427–431 (1979) Google Scholar
  10. Dickey, D.A., Fuller, W.A.: Likelihood ratio tests for autoregressive time series with a unit root. Econometrica 49(4), 1057–1072 (1981) Google Scholar
  11. Dickey, D.A., Jansen, D.W., Thornton, D.L.: A primer on cointegration with an application to money and income. Federal Reserve Bank of St. Louis Review, pp. 58–78 (March/April 1991) Google Scholar
  12. Eling, M.: Performance measurement of hedge funds using data envelopment analysis. Financ. Mark. Portfolio Manag. 20(4), 442–471 (2006) Google Scholar
  13. Embrechts, P., McNeil, A., Straumann, D.: Correlation: pitfalls and alternatives. Risk Mag. 12(5), 69–71 (1999) Google Scholar
  14. Embrechts, P., McNeil, A., Straumann, D.: Correlation and dependence in risk management: properties and pitfalls. In: Dempster, M. (ed.) Risk Management: Value at Risk and Beyond, pp. 176–223. Cambridge University Press, Cambridge (2002) Google Scholar
  15. Engle, R., Granger, C.W.J.: Co-integration and error correction: representation, estimation and testing. Econometrica 55(2), 251–276 (1987) Google Scholar
  16. Fung, W., Hsieh, D.A.: Empirical characteristics of hedge funds and commodity funds: natural vs. spurious biases. J. Financ. Quant. Anal. 35(3), 291–307 (2000) Google Scholar
  17. Füss, R., Herrmann, F.: Long-term interdependence between hedge fund strategy and stock market indices. Manag. Finance 31(12), 29–45 (2005) Google Scholar
  18. Füss, R., Kaiser, D.G., Adams, Z.: Value at risk, GARCH modelling and the forecasting of hedge fund return volatility. J. Deriv. Hedge Funds 13(1), 2–25 (2007) Google Scholar
  19. Füss, R., Kaiser, D.G., Rehkugler, H., Butina, I.: Long-term co-movements between hedge funds and financial asset markets. In: Gregoriou, G.N., Kaiser, D.G. (eds.) Hedge Funds and Managed Futures—A Handbook for Institutional Investors, pp. 397–428. Risk Books, London (2006) Google Scholar
  20. Galeano, J., Favre, L.: The inclusion of hedge funds in Swiss pension fund portfolios. Financ. Mark. Portfolio Manag. 15(4), 450–472 (2001) Google Scholar
  21. Garret, I., Spyrou, S.: Common stochastic trends in emerging markets. Manch. School 67(6), 649–660 (1999) Google Scholar
  22. Granger, C.W.J.: Some properties of time series data and their use in econometric model specification. J. Econ. 16(1), 121–130 (1981) Google Scholar
  23. Gregoriou, G., Rouah, F.: Do stock market indices move the ten largest hedge funds? A cointegration approach. J. Altern. Invest. 3(3), 61–66 (2001) Google Scholar
  24. Gregoriou, G., Rouah, F., Sedzro, K.: Do hedge fund returns follow random walks? J. Deriv. Hedge Funds 7(3), 241–250 (2001) Google Scholar
  25. Hakkio, C.S., Rush, M.: Cointegration: how short is the long-run? J. Int. Money Finance 10(4), 571–581 (1991) Google Scholar
  26. Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994) Google Scholar
  27. HFR: HFR Industry report Q4 2005. Chicago (2006) Google Scholar
  28. Hung, W.S., Cheung, Y.-L.: Interdependence of Asian emerging equity markets. J. Bank. Finance 22(2), 281–288 (1995) Google Scholar
  29. Johansen, S.: Statistical analysis of cointegration vectors. J. Econ. Dyn. Control 12(2–3), 231–254 (1988) Google Scholar
  30. Johansen, S.: Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregression residuals. Econometrica 59(6), 1551–1581 (1991) Google Scholar
  31. Johansen, S.: Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford University Press, Oxford (1995) Google Scholar
  32. Johansen, S., Juselius, K.: Maximum likelihood estimation and inference on cointegration with applications to the demand for money. Oxf. Bull. Econ. Stat. 52(2), 169–210 (1990) Google Scholar
  33. Johansen, S., Juselius, K.: Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica 59(6), 1551–1580 (1991) Google Scholar
  34. Kanas, A.: Linkages between the US and European equity markets: further evidence from cointegration tests. Appl. Finan. Econ. 8(6), 607–614 (1998) Google Scholar
  35. Kasa, K.: Common stochastic trends in international stock markets. J. Monet. Econ. 29(1), 95–124 (1992) Google Scholar
  36. Kat, H.M.: The dangers of using correlation to measure dependence. J. Altern. Invest. 6(2), 54–58 (2003) Google Scholar
  37. Kat, H.M., Lu, S.: An excursion into the statistical properties of hedge fund returns. Working paper, University of Reading (2002) Google Scholar
  38. Lhabitant, F.-S.: Hedge Funds: Myths and Limits. Wiley, London (2002) Google Scholar
  39. Lhabitant, F.-S.: Hedge Funds: Quantitative Insights. Wiley, Chichester (2004) Google Scholar
  40. Lucas, A.: Strategic and tactical asset allocation and the effect of long-run equilibrium relations. Research memorandum, Vrije University (1997) Google Scholar
  41. Lütkepohl, H.: Introduction to Multiple Time Series Analysis. Springer, Berlin (1991) Google Scholar
  42. MacKinnon, J.G.: Numerical distribution functions for unit root and cointegration tests. J. Appl. Econ. 11(6), 601–618 (1996) Google Scholar
  43. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952) Google Scholar
  44. Morley, I.: Alternative investments: perceptions and reality. J. Altern. Invest. 3(4), 62–64 (2001) Google Scholar
  45. Nelson, C.R., Plosser, C.I.: Trends and random walks in macroeconomic time series. J. Monet. Econ. 10(2), 139–162 (1982) Google Scholar
  46. Osterwald-Lenum, M.: A note on quantiles of the asymptotic distribution of the maximum likelihood cointegration rank test statistics. Oxf. Bull. Econ. Stat. 54(3), 461–472 (1992) Google Scholar
  47. Pan, M.-S., Liu, Y.A., Roth, H.J.: Common stochastic trends and volatility in Asian-Pacific equity markets. Glob. Finance J. 10(2), 161–172 (1999) Google Scholar
  48. Perron, P.: Testing for a Random Walk: a Simulation Experiment of Power when the Sampling Interval is Varied. Advances in Econometrics and Modeling. Kluwer, Boston (1989) Google Scholar
  49. Planta, R.D.: Banz, R.W.: Hedge funds: all that glitters is not gold—seven questions for prospective investors. Financ. Mark. Portfolio Manag. 16(3), 316–336 (2002) Google Scholar
  50. Said, S.E., Dickey, D.A.: Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 71(3), 599–607 (1984) Google Scholar
  51. Shiller, R.J., Perron, P.: Testing the random walk hypothesis: power versus frequency of observation. Econ. Lett. 18(4), 381–386 (1985) Google Scholar
  52. Taylor, M.P., Tonks, I.: The internationalisation of stock markets and the abolition of UK exchange control. Rev. Econ. Stat. 71(2), 332–336 (1989) Google Scholar
  53. Zask, E.: Hedge funds: an industry overview. J. Altern. Invest. 3(3), 33–41 (2000) Google Scholar

Copyright information

© Swiss Society for Financial Market Research 2007

Authors and Affiliations

  1. 1.Department of Empirical Research and EconometricsUniversity of FreiburgFreiburg im BreisgauGermany
  2. 2.Feri Institutional Advisors GmbHBad HomburgGermany

Personalised recommendations