Partnership duration and concurrent partnering: implications for models of HIV prevalence

  • Alan G. IsaacEmail author
  • Larry Sawers
Regular Article


Researchers and policy makers have argued that long-duration concurrent relationships promote the spread of HIV. The concurrency hypothesis proposes that concurrent partnering, particularly as manifested in formal and informal polygyny, is a primary contributor to the spread of HIV in sub-Saharan Africa. We investigate claims that agent-based models of concurrent partnering support this hypothesis. Specifically, we explore how assumptions about the duration and network structure of sexual partnerships affect the results of agent-based models of HIV propagation. We offer new support for the contention that long-duration concurrent partnering can be protective against HIV transmission rather than promoting it. Additionally, we argue that the focus on concurrency has misdirected attention away from the key role of exclusivity.


Concurrency HIV Sub-Saharan Africa Partnership duration Coital dilution Exclusivity Pair formation 

JEL Classification

I12 I18 C63 


Supplementary material


  1. Baeten JM, Heffron R, Kidoguchi L, Mugo NR, Katabira E, Bukusi EA, Asiimwe S, Haberer JE, Morton J, Ngure K, Bulya N, Odoyo J, Tindimwebwa E, Hendrix C, Marzinke MA, Ware NC, Wyatt MA, Morrison S, Haugen H, Mujugira A, Donnell D, Celum C, Team PDP (2016) Integrated delivery of antiretroviral treatment and pre-exposure prophylaxis to HIV-1-serodiscordant couples: a prospective implementation study in Kenya and Uganda. PLOS Med 13(8):1–17. CrossRefGoogle Scholar
  2. Bauch C (2002) A versatile ODE approximation to a network model for the spread of sexually transmitted diseases. J Math Biol 45(5):375–395. CrossRefGoogle Scholar
  3. Bersini H (2012) UML for ABM. J Artif Soc Soc Simul 15(1):Article 9. Accessed 15 Sept 2018
  4. Binmore K (2007) Playing for real: a text of game theory. Oxford University Press, OxfordCrossRefGoogle Scholar
  5. Blower SM, Boe C (1993) Sex acts, sex partners, and sex budgets: implications for risk factor analysis and estimation of HIV transmission probabilities. J Acquir Immune Defic Syndr 6(12):1347–1352Google Scholar
  6. Caraël M, Glynn J, Lagarde E, Morison L (2004) Sexual networks and HIV in four African populations: the use of a standardised behvioural survey with biological markers. In: Morris M (ed) Network epidemiology: a handbook for survey design and data collection, chap 3. Oxford University Press, Oxford, pp 58–84Google Scholar
  7. Chen MI, Ghani AC, Edmunds J (2008) Mind the gap: the role of time between sex with two consecutive partners on the transmission dynamics of gonorrhea. Sex Transm Dis 35(5):435–444CrossRefGoogle Scholar
  8. Delva W, Meng F, Beauclair R, Deprez N, Temmerman M, Welte A, Hens N (2013) Coital frequency and condom use in monogamous and concurrent sexual relationships in Cape Town, South Africa. J Int AIDS Soc 16:1–8Google Scholar
  9. Deuchert E, Brody S (2007) Plausible and implausible parameters for mathematical modeling of nominal heterosexual HIV transmission. Ann Epidemiol 17(3):237–44CrossRefGoogle Scholar
  10. Dietz K (1988) On the transmission of HIV. Math Biosci 90:397–414CrossRefGoogle Scholar
  11. Eaton J (2013) The spread and control of HIV in southern Africa. Ph.D thesisGoogle Scholar
  12. Eaton JW, Hallett TB, Garnett GP (2011) Concurrent sexual partnerships and primary hiv infection: a critical interaction. AIDS Behav 15(4):687–692. CrossRefGoogle Scholar
  13. Epstein H (2007) The invisible cure. Farrar, Strauss and Giroux, New YorkGoogle Scholar
  14. Epstein H (2008) AIDS and the irrational. BMJ 337. Accessed 15 Sept 2018
  15. Epstein H (2010) The mathematics of concurrent partnerships and HIV: a commentary on Lurie and Rosenthal 2009. AIDS Behav 14(1):29–30CrossRefGoogle Scholar
  16. Epstein H, Morris M (2011) Concurrent partnerships and HIV: an inconvenient truth. J Int AIDS Soc 14:1–11CrossRefGoogle Scholar
  17. Fu R, Gutfraind A, Brandeau ML (2016) Modeling a dynamic bi-layer contact network of injection drug users and the spread of blood-borne infections. Math Biosci 273:102–113. CrossRefGoogle Scholar
  18. Gaydosh L, Reniers G, Helleringer S (2013) Partnership concurrency and coital frequency. AIDS Behav 17(7):2376–2386CrossRefGoogle Scholar
  19. Goodreau S, Cassels S, Kasprzyk D, Montano D, Greek A, Morris M (2012) Concurrent partnerships, acute infection and HIV epidemic dynamics among young adults in Zimbabwe. AIDS Behav 16:312–322CrossRefGoogle Scholar
  20. Halperin DT, Epstein H (2004) Concurrent sexual partnerships help to explain Africa’s high HIV prevalence: implications for prevention. Lancet 364(9428):4–6CrossRefGoogle Scholar
  21. Halperin DT, Epstein H (2007) Why is HIV prevalence so severe in southern Africa? South Afr J HIV Med 8(1):19–25CrossRefGoogle Scholar
  22. Harrison A, O’Sullivan L (2010) In the absence of marriage: long-term concurrent partnerships, pregnancy, and HIV risk dynamics among South African young adults. AIDS Behav 14:991–1000CrossRefGoogle Scholar
  23. Harrison A, Cleland J, Frohlich J (2008) Young people’s sexual partnerships in KwaZulu-Natal, South Africa: patterns, contextual influences, and HIV risk. Stud Fam Plan 39(4):295–308CrossRefGoogle Scholar
  24. Hollingsworth TD, Anderson RM, Fraser C (2008) HIV-1 transmission, by stage of infection. J Infect Dis 198(5):687–693. CrossRefGoogle Scholar
  25. Hudson CP (1993) Concurrent partnerships could cause AIDS epidemics. Int J STD AIDS 4(5):249–253CrossRefGoogle Scholar
  26. Jenness SM, Biney AA, Ampofo WK, Nii-Amoo Dodoo F, Cassels S (2015) Minimal coital dilution in Accra, Ghana. J Acquir Immune Defic Syndr 69(1):85–91CrossRefGoogle Scholar
  27. Jones CI, Klenow PJ (2016) Beyond GDP? welfare across countries and time. Am Econ Rev 106(9):2426–2457. CrossRefGoogle Scholar
  28. Kharsany ABM, Frohlich JA, Yende-Zuma N, Mahlase G, Samsunder N, Dellar RC, Zuma-Mkhonza M, Abdool Karim SS, Abdool Karim Q (2015) Trends in HIV prevalence in pregnant women in rural South Africa. J Acquir Immune Defic Syndr 70(3):289–295. CrossRefGoogle Scholar
  29. Kim JH, Riolo RL, Koopman JS (2010) HIV transmission by stage of infection and pattern of sexual partnerships. Epidemiology 21(5):674–684CrossRefGoogle Scholar
  30. Kretzschmar M (1995) Deterministic and stochastic pair formation models for the spread of sexually transmitted diseases. J Biol Syst 03(03):789–801. CrossRefGoogle Scholar
  31. Kretzschmar M, Dietz K (1998) The effect of pair formation and variable infectivity on the spread of an infection without recovery. Math Biosci 148(1):83–113. CrossRefGoogle Scholar
  32. Kretzschmar M, Heijne JC (2017) Pair formation models for sexually transmitted infections: a primer. Infect Dis Model 2(3):368–378. Google Scholar
  33. Kretzschmar M, Morris M (1996) Measures of concurrency in networks and the spread of infection disease. Math Biosci 133:165–195CrossRefGoogle Scholar
  34. Kretzschmar M, White RG, Caraël M (2010) Concurrency is more complex than it seems. AIDS 24(2):313–315. CrossRefGoogle Scholar
  35. Lurie MN, Rosenthal S (2010a) The concurrency hypothesis in sub-Saharan Africa: convincing empirical evidence is still lacking. Response to Mah and Halperin, Epstein, and Morris. AIDS Behav 14(1):34–37CrossRefGoogle Scholar
  36. Lurie MN, Rosenthal S (2010b) Concurrent partnerships as a driver of the HIV epidemic in sub-Saharan Africa? the evidence is limited. AIDS Behav 14(1):17–24CrossRefGoogle Scholar
  37. Mah T, Halperin D (2010) Concurrent sexual partnerships and the HIV epidemics in Africa: evidence to move forward. AIDS Behav 14(1):11–16. CrossRefGoogle Scholar
  38. McCreesh N, O’Brien K, Nsubuga RN, Shafer LA, Bakker R, Seeley J, Hayes RJ, White RG (2012) Exploring the potential impact of a reduction in partnership concurrency on HIV incidence in rural Uganda: a modeling study. Sex Transm Dis 39(6):407–413. CrossRefGoogle Scholar
  39. Morris M, Kretzschmar M (1997) Concurrent partnerships and the spread of HIV. AIDS 11(5):641–648CrossRefGoogle Scholar
  40. Morris M, Kretzschmar M (2000) A microsimulation study of the effect of concurrent partnerships on the spread of HIV in Uganda. Math Popul Stud 8(2):109–133CrossRefGoogle Scholar
  41. Morris M, Epstein H, Wawer M (2010) Timing is everything: international variations in historical sexual partnership concurrency and HIV prevalence. PLoS One 5(11):1–8. CrossRefGoogle Scholar
  42. Powers KA, Hoffman IF, Ghani AC, Hosseinipour MC, Pilcher CD, Price MA, Pettifor AE, Chilongozi DA, Martinson FEA, Cohen MS, Miller WC (2011) Sexual partnership patterns in Malawi: implications for HIV/STI transmission. Sex Transm Dis 38(7):657–666CrossRefGoogle Scholar
  43. Reniers G, Tfaily R (2008) Polygyny and HIV in Malawi. Demogr Res 19:1811–1830CrossRefGoogle Scholar
  44. Reniers G, Tfaily R (2010) An inquiry into the mechanisms linking polygyny, partnership concurrency and HIV transmission in sub-Saharan Africa. Technical report. Princeton University, Office of Population ResearchGoogle Scholar
  45. Reniers G, Tfaily R (2012) Polygyny, partnership concurrency and HIV transmission in sub-Saharan Africa. Demography 49:1075–1101CrossRefGoogle Scholar
  46. Reniers G, Watkins S (2010) Polygyny and the spread of HIV in sub-Saharan Africa: a case of benign concurrency. AIDS 24(2):299–307CrossRefGoogle Scholar
  47. Sawers L (2013) Measuring and modelling concurrency. J Int AIDS Soc 16(1):17431. CrossRefGoogle Scholar
  48. Sawers L, Isaac AG (2017) Partnership duration, concurrency, and HIV in sub-saharan africa. Afr J AIDS Res 16(2):155–164. CrossRefGoogle Scholar
  49. Sawers L, Stillwaggon E (2010) Concurrent sexual partnerships do not explain the HIV epidemics in Africa: a systematic review of the evidence. J Int AIDS Soc 13(1):Article 34, 1–23.
  50. Sawers L, Isaac AG, Stillwaggon E (2011) HIV and concurrent sexual partnerships: modelling the role of coital dilution. J Int AIDS Soc 14(1):Article 44, 1–9.
  51. Tanser F, Bärnighausen T, Hund L, Garnett GP, McGrath N, Newell ML (2011) Effect of concurrent sexual partnerships on rate of new HIV infections in a high-prevalence, rural South African population: a cohort study. Lancet 378(9787):247–255CrossRefGoogle Scholar
  52. Watts CH, May RM (1992) The influence of concurrent partnerships on the dynamics of HIV/AIDS. Math Biosci 108(1):89–104CrossRefGoogle Scholar
  53. Welch G, Chick S, Koopman J (1998) Effect of concurrent partnerships and sex-act rate on gonorrhea prevalence. Simulation 71(4):242–249. CrossRefGoogle Scholar
  54. Young A (2005) The gift of the dying: the tragedy of aids and the welfare of future African generations. Q J Econ 120(2):423–466. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of EconomicsAmerican UniversityWashingtonUSA

Personalised recommendations