Advertisement

Stagnation proofness in n-agent bargaining problems

  • Jaume García-Segarra
  • Miguel Ginés-Vilar
Regular Article

Abstract

Some bargaining solutions may remain unchanged under any extension of a bargaining set which does not affect the utopia point, despite the fact that there is room to improve the utility of at least one agent. We call this phenomenon the stagnation effect. A bargaining solution satisfies stagnation proofness if it does not suffer from the stagnation effect. We show that stagnation proofness is compatible with the restricted version of strong monotonicity (Thomson and Myerson in Int J Game Theory 9(1):37–49, 1980), weak Pareto optimality, and scale invariance. The four axioms together characterize the family of the bargaining solutions generated by strictly-increasing paths ending at the utopia point (SIPUP-solutions).

Keywords

Bargaining Pareto optimality Monotonicity Stagnation 

JEL Classification

C78 D74 

References

  1. Alós-Ferrer C, García-Segarra J, Ginés-Vilar M (2017) Anchoring on Utopia: a generalization of the Kalai–Smorodinsky solution. Economic Theory Bulletin forthcomingGoogle Scholar
  2. Chun Y, Peters HJH (1989) Lexicographic monotone path solutions. Op Res Spektrum 11(1):43–47CrossRefGoogle Scholar
  3. Driesen B (2016) Truncated leximin solutions. Math Soc Sci 83:79–87CrossRefGoogle Scholar
  4. Dubra J (2001) An asymmetric Kalai–Smorodinsky solution. Econ Lett 73(2):131–136CrossRefGoogle Scholar
  5. García-Segarra J, Ginés-Vilar M (2015) The impossibility of paretian monotonic solutions: a strengthening of Roth’s result. Op Res Lett 43(5):476–478CrossRefGoogle Scholar
  6. Herrero C (1998) Endougenous reference point and the adjusted proportional solution for bargaining problems with claims. Soc Choice Welf 15(1):113–119CrossRefGoogle Scholar
  7. Herrero C, Marco MC (1993) Rational equal-loss solutions for bargaining problems. Math Soc Sci 26(3):273–286CrossRefGoogle Scholar
  8. Imai H (1983) Individual monotonicity and lexicographic maxmin solution. Econometrica 51(2):389–401CrossRefGoogle Scholar
  9. Kalai E (1977) Proportional solutions to bargaining situations: interpersonal utility comparisons. Econometrica 45(7):1623–1630CrossRefGoogle Scholar
  10. Kalai E, Smorodinsky M (1975) Other solutions to Nash’s bargaining problem. Econometrica 43(3):513–518CrossRefGoogle Scholar
  11. Nash JF (1950) The bargaining problem. Econometrica 18(2):155–162CrossRefGoogle Scholar
  12. Peters HJH, Tijs SH (1984) Individually monotonic bargaining solutions of \(n\)-person bargaining games. Method Op Res 51:377–384Google Scholar
  13. Peters HJH, Tijs SH (1985) Characterization of all individually monotonic bargaining solutions. Int J Game Theory 14(4):219–228CrossRefGoogle Scholar
  14. Rosenthal RW (1976) An arbitration model for normal-form games. Math Op Res 1(1):82–88CrossRefGoogle Scholar
  15. Salonen H (1987) Partially monotonic bargaining solutions. Soc Choice Welf 4(1):1–8CrossRefGoogle Scholar
  16. Thomson W (1994) Cooperative models of bargaining. In: Aumann RJ, Hart S (eds) Handbook of game theory with economic applications, vol 2. Elsevier, Amsterdam, pp 1237–1284CrossRefGoogle Scholar
  17. Thomson W, Myerson RB (1980) Monotonicity and independence axioms. Int J Game Theory 9(1):37–49CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of EconomicsUniversity of CologneCologneGermany
  2. 2.Department of EconomicsUniversitat Jaume I de CastellóCastellónSpain

Personalised recommendations